
DB2 LUW Powerful Monitoring Tools and Procedures

• Db2 night show #264

• C Raghavendra 

• Senior staff software engineer

• IBM Software labs Data and AI



Achievements in IBM

1. Hall of Fame Award in the year -2019
2. Outstanding Technical Achievement Award – 2018

3. IBM Rock Star Award – 2018
4.Michelin Client Award for Automation – 2018

5.Successfull Completion of ONC Data Center Move project – 2017
6.GCH Approved ideas for db2 luw automation ideas – 2017

7.Eminence and Excellence Cash Prize Award - 2017
8.Eminence and Excellence Cash Prize Award – 2016

9. Top Innovator and Mentor Award – 2016
10. Top Innovator and Mentor Award – 2015

11.Michelin Client Certification of Appreciation – 2014
12.Appreciation from Database Service Engineering Team – 2020

13.Db2 LUW python Tool kit contribution of a performance shell script appreciation – 2020
14.Top Innovator and Mentor Award – 2020

15.IBM Gold Champion Learner -2020
16. IBM Silver Champion Learner -2023
17. IDUG Bronze Member Award – 2021
18. IDUG Silver Member Award – 2022

19. Best Automation Award – 2013
20. Best Automation Award - 2014



Built-in routines and views 

Built-in administrative routines and views provide a simplified programmatic interface to administer and use 
databases and database objects through structured query language (SQL). 

Built-in routines encompass procedures, scalar functions, and table functions. 
You can run these built-in routines and views from an SQL-based application, a command line, or a command script. 

To help ensure your successful use of the built-in routines and views, certain coding practices are recommended. 
These practices are especially important because routines might change from release to release and also within 
releases, such as through fix packs, as enhancements are made. 

Authorizations for using built-in routines and views 

For all built-in routines in the SYSPROC schema, you need EXECUTE privilege on the routine. 

For all built-in views in the SYSIBMADM schema, you need SELECT privilege on the view. 



Built-in routines

For all built-in routines in the SYSPROC schema, you need EXECUTE privilege on the routine. You can use the following 
query to check whether your authorization ID, or a group or a role to which you belong, has EXECUTE privilege

SELECT A.SPECIFICNAME, GRANTEE, GRANTEETYPE FROM SYSCAT.ROUTINEAUTH A, SYSCAT.ROUTINES R WHERE 
A.SCHEMA = R.ROUTINESCHEMA AND A.SPECIFICNAME = R.SPECIFICNAME AND A.SCHEMA = 'SYSPROC' AND 
R.ROUTINENAME = 'routine_name' AND A.EXECUTEAUTH <> 'N’ 

Built-in views 

For all built-in views in the SYSIBMADM schema, you need SELECT privilege on the view. You can use the following query 
to check whether your authorization ID, or a group or a role to which you belong, has SELECT privilege: 

SELECT GRANTEE, GRANTEETYPE FROM SYSCAT.TABAUTH WHERE TABSCHEMA = 'SYSIBMADM' AND TABNAME = 
'view_name' AND SELECTAUTH <> 'N' 



Snapshot Routines and Views

This grouping of routines and views can be used to retrieve information about the database and any connected applications at a 
specific time. 

Some of the important Routines and Views are :

QUERY_PREP_COST administrative view - Retrieve statement prepare time information

SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL table function - Retrieve dynsql logical group snapshot 
information 

SNAPUTIL_PROGRESS administrative view and SNAP_GET_UTIL_PROGRESS table function - Retrieve progress logical data 
group snapshot information 

SNAPTAB_REORG administrative view and SNAP_GET_TAB_REORG table function - Retrieve table reorganization snapshot 
information 

TOP_DYNAMIC_SQL administrative view - Retrieve information about the top dynamic SQL statements 



QUERY_PREP_COST administrative view

The QUERY_PREP_COST administrative view returns a list of statements with information about the time required to prepare the statement. 

The schema is SYSIBMADM. 

Authorization 
One of the following authorizations is required: 

• SELECT privilege on the QUERY_PREP_COST administrative view
• CONTROL privilege on the QUERY_PREP_COST administrative view
• DATAACCESS authority

• DBADM authority
• SQLADM authority
• ACCESSCTRL authority
• SECADM authority 

Default PUBLIC privilege 
In a non-restrictive database, SELECT privilege is granted to PUBLIC when the view is automatically created. 





SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL table function

SNAPDYN_SQL administrative view 

This administrative view allows you to retrieve dynsql logical group snapshot information for the currently connected 
database. 

This view returns information equivalent to the GET SNAPSHOT FOR DYNAMIC SQL ON database- alias CLP command.

The schema is SYSIBMADM.

Authorization 

One of the following authorizations is required to use the view: 

• SELECT privilege on the SNAPDYN_SQL administrative view
• CONTROL privilege on the SNAPDYN_SQL administrative view
• DATAACCESS authority
• DBADM authority
• SQLADM authority
• ACCESSCTRL authority
• SECADM authority





SNAP_GET_DYN_SQL table function 

The SNAP_GET_DYN_SQL table function returns the same information as the SNAPDYN_SQL administrative view, but allows you to 
retrieve the information for a specific database on a specific database member, aggregate of all database members or all database 
members. 

This table function returns information equivalent to the GET SNAPSHOT FOR DYNAMIC SQL ON database-alias CLP command. 

Authorization 
One of the following authorizations is required:

• EXECUTE privilege on the SNAP_GET_DYN_SQL table function 
• DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is also required: • SYSMON
• SYSCTRL
• SYSMAINT
• SYSADM 





SNAPUTIL_PROGRESS administrative view and SNAP_GET_UTIL_PROGRESS table function 

SNAPUTIL_PROGRESS administrative view 

Used in conjunction with the SNAPUTIL administrative view, the SNAPUTIL_PROGRESS administrative view provides the 
same information as the LIST UTILITIES SHOW DETAIL CLP command. 

The schema is SYSIBMADM.

Authorization 
One of the following authorizations is required to use the view: 
• SELECT privilege on the SNAPUTIL_PROGRESS administrative view
• CONTROL privilege on the SNAPUTIL_PROGRESS administrative view
• DATAACCESS authority
• DBADM authority
• SQLADM authority
• ACCESSCTRL authority
• SECADM authority





SNAP_GET_UTIL_PROGRESS table function 

The SNAP_GET_UTIL_PROGRESS table function returns the same information as the SNAPUTIL_PROGRESS administrative view, but 
allows you to retrieve the information for a specific database on a specific database member, aggregate of all database members or all 
database members. 

Used in conjunction with the SNAP_GET_UTIL table function, the SNAP_GET_UTIL_PROGRESS table function provides the same 
information as the LIST UTILITIES SHOW DETAIL CLP command. 

Authorization 
One of the following authorizations is required: 

• EXECUTE privilege on the SNAP_GET_UTIL_PROGRESS table function • DATAACCESS authority 

In addition, to access snapshot monitor data, one of the following authorities is also required: 
• SYSMON
• SYSCTRL
• SYSMAINT • SYSADM 





SNAPTAB_REORG administrative view and SNAP_GET_TAB_REORG table function 

SNAPTAB_REORG administrative view 

This administrative view allows you to retrieve table reorganization snapshot information for the currently 
connected database. 

Used with the SNAPTAB administrative view, the SNAPTAB_REORG administrative view provides the data equivalent 
to the GET SNAPSHOT FOR TABLES ON database-alias CLP command. 

The schema is SYSIBMADM.
Authorization 

One of the following authorizations is required to use the view:

• SELECT privilege on the SNAPTAB_REORG administrative view 
• CONTROL privilege on the SNAPTAB_REORG administrative view • DATAACCESS authority
• DBADM authority
• SQLADM authority 





SNAP_GET_TAB_REORG table function 

The SNAP_GET_TAB_REORG table function returns the same information as the SNAPTAB_REORG administrative view, but allows 
you to retrieve the information for a specific database on a specific database member, aggregate of all database members or all 
database members. 

Used with the SNAP_GET_TAB table function, the SNAP_GET_TAB_REORG table function provides the data equivalent to the GET 
SNAPSHOT FOR TABLES ON database-alias CLP command. 

Authorization 

One of the following authorizations is required: 
• EXECUTE privilege on the SNAP_GET_TAB_REORG table function • DATAACCESS authority 

In addition, to access snapshot monitor data, one of the following authorities is also required: 
• SYSMON
• SYSCTRL
• SYSMAINT • SYSADM 





TOP_DYNAMIC_SQL administrative view

The TOP_DYNAMIC_SQL administrative view returns the top dynamic SQL statements sortable by number of 
executions, average execution time, number of sorts, or sorts per statement. 

The queries returned by TOP_DYNAMIC_SQL administrative view are the queries that should get focus to ensure they 
are well tuned. 

The schema is SYSIBMADM. 

Authorization 
One of the following authorizations is required: 
• SELECT privilege on the TOP_DYNAMIC_SQL administrative view
• CONTROL privilege on the TOP_DYNAMIC_SQL administrative view
• DATAACCESS authority
• DBADM authority
• SQLADM authority
• ACCESSCTRL authority
• SECADM authority

In addition, to access snapshot monitor data, one of the following authorities is also required: • SYSMON
• SYSCTRL
• SYSMAINT
• SYSADM 





MONREPORT module

The MONREPORT module provides a set of procedures for retrieving a variety of monitoring data and generating text reports.

The schema for this module is SYSIBMADM.
The MONREPORT module includes the following built-in routines.

CONNECTION procedure : The connection report provides the monitor report for each connection

CURRRENT APPS procedure : The Current Applications report presents the current instantaneous state of processing of units of work, 
agents, and activities for each connection. The report starts with state information summed across connections, followed by a section 
for details for each connection.

CURRENTSQL procedure : The Current SQL report lists the top activities currently running, as measured by various metrics. 

DBSUMMARY procedure : The Summary report contains in-depth monitor data for the entire database, as well as key performance 
indicators for each connection, workload, service class, and database member.

LOCKWAIT procedure : The Lock Waits report contains information about each lock wait currently in progress. Details include lock 
holder and requestor details, plus characteristics of the lock held and the lock requested.

PKGCACHE procedure : The Package Cache report lists the top statements accumulated in the package cache as measured by various 
metrics.



Examples

The following examples demonstrate various ways to call the CONNECTION procedure.
This example produces a report for all connections, with data displayed corresponding to an interval of 30 seconds:

call monreport.connection(30); 
This example produces a report for a connection with an application handle of 34. Data is displayed based on absolute 
totals accumulated in the source table functions (rather than based on the current interval):

call monreport.connection(0, 34);

This next example produces a report for a connection with an application handle of 34. Data is displayed corresponding 
to an interval of 10 seconds.

call monreport.connection(DEFAULT, 34);

The final example produces the default report: for all connections, with data displayed corresponding to an interval of 
10 seconds:

call monreport.connection;



The following examples demonstrate various ways to call the DBSUMMARY procedure.

The first example produces a report that displays data corresponding to an interval of 30 seconds.

call monreport.dbsummary(30);

The next example produces a report that displays data corresponding to an interval of 10 seconds (the 
default value):

call monreport.dbsummary; 



The following examples demonstrate ways to call the CURRENTAPPS procedure:

call monreport.currentapps;

call monreport.currentapps(); 

The following examples demonstrate various ways to call the CURRENTSQL procedure. 

The first example produces a report that shows activity metrics aggregated across all members:

call monreport.currentsql;

The next example produces a report that shows activity metrics specific to the activity performance on member number 4

call monreport.currentsql(4);



The following examples demonstrate various ways to call the LOCKWAIT procedure:

call monreport.lockwait;

call monreport.lockwait();

The following examples demonstrate various ways to call the PKGCACHE procedure. 

The first example produces a report based on all statements in the package cache, with data aggregated across all members:

call monreport.pkgcache;

The next example produces a report based on both dynamic and static statements in the package cache for which metrics have been 
updated within the last 30 minutes, with data aggregated across all members:

call monreport.pkgcache(30); 

The next example produces a report based on all dynamic statements in the package cache, with data aggregated across all 
members:

call monreport.pkgcache(DEFAULT, 'd'); 

The next example produces a report based on both dynamic and static statements in the package cache for which metrics have been 
updated within the last 30 minutes, with data specific to a member number 4:

call db2monreport.pkgcache(30, DEFAULT, 4);



When I started working with DB2 (on versions 5 and 7), the only option for seeing what was going on in the database 
was snapshots. I spent a fair amount of time parsing the data in snapshots with Perl scripts to filter out only the data I 
wanted to see. Slowly, methods of using SQL to access snapshot data were introduced. First table functions for accessing 
snapshot data, then SYSIBMADM views, and finally we have the MON_GET family of table functions.

Compared to Using Snapshot Data

One of the things I loved about snapshot data is that it covered or could easily cover a discrete time period. By default, 
that time period was since database activation, but I could reset monitor switches and only see data since that reset. 
The reset was specific to the session I was in, so other sessions would have other reset points. In fact, I ran scripts that 
would reset the monitor switches, sleep for an hour, and then grab a set of snapshots. Keeping this data for a week or a 
month, I then had a basis for comparison for any numbers I was looking at. Granted, this meant that I had a bunch of 
text files out there to parse through, but grep can work wonders, and when it’s not enough there’s always Perl’s 
powerful text-parsing capabilities.

There is no reset with data in SYSIBMADM views or monitoring table functions. The data is always since the last 
database restart. One advantage of using the mon_get monitoring functions is that the collection of data is “in-memory” 
and considered more lightweight than snapshots. It is also the strategic direction for IBM going forward, and new 
elements and even table functions are constantly being added.

MON_GET Family of Functions 



How to Find what Table Functions are Available?

If I simply want a list of the available monitoring functions, I use this SQL

select substr(r.ROUTINENAME,1,48) as ROUTINENAME, substr(r.SPECIFICNAME,1,48) as SPECIFICNAME from 
sysibm.sysroutines r where r.function_type='T' and substr(r.ROUTINENAME,1,4) in ('SNAP','MON_','ENV_','COMP') 
and substrb(r.SPECIFICNAME,-3,3) not in ('V91', 'V95', 'V97', '_AP') order by 
r.ROUTINESCHEMA,r.ROUTINENAME,r.SPECIFICNAME;

select substr(P.ROUTINENAME,1,48) as ROUTINENAME, substr(P.SPECIFICNAME,1,48) as SPECIFICNAME, case when 
P.ROWTYPE in ('B','O','P') then CHAR('IN',3) else CHAR('OUT',3) end as IN_OUT, cast(p.ORDINAL as char(3)) as ORD, 
substr(P.PARMNAME,1,40) as PARMNAME, substr(P.TYPENAME,1,16) as TYPE from sysibm.sysroutines r, 
sysibm.sysroutineparms p where p.routineschema=r.routineschema and p.routinename=r.routinename and 
p.specificname=r.specificname and r.function_type='T' and r.ROUTINENAME='MON_GET_TABLE' order by 
P.ROUTINESCHEMA,P.ROUTINENAME,P.SPECIFICNAME,IN_OUT,P.ORDINAL;



Critical Table Functions that can be used in DB2 LUW

1. MON_GET_BUFFERPOOL :                        17.MON_GET_CONTAINER
2. MON_GET_DATABASE:                                 18.MON_GET_HADR
3. MON_GET_TABLE :                                         19.MON_GET_PAGE_ACCESS_INFO
4. MON_GET_INDEX:                                          20.MON_GET_PKG_CACHE_STMT
5. MON_GET_TABLESPACE:                            21.MON_GET_PKG_CACHE_STMT_DETAILS
6. MON_GET_TRANSACTION_LOG              
7. MON_GET_CONNECTION                          
8. MON_GET_INSTANCE                                  
9. MON_GET_LATCH
10. MON_GET_GROUP_BUFFERPOOL
11. MON_GET_MEMORY_POOL
12. MON_GET_MEMORY_SET
13. MON_GET_DATABASE_DETAILS
14. MON_GET_AGENT
15. MON_GET_APPLICATION_HANDLE
16. MON_GET_APPL_LOCKWAIT



MON_GET_BUFFERPOOL 

The above table function can be used to get the bufferpool metrics and returns monitor metrics for one or 
more buffer pools.

Example :

Computing the Bufferpool Hit Ratio 

WITH BPMETRICS AS 
( SELECT bp_name, pool_data_l_reads + pool_temp_data_l_reads + 
pool_index_l_reads + pool_temp_index_l_reads + pool_xda_l_reads + 
pool_temp_xda_l_reads as logical_reads, pool_data_p_reads + 
pool_temp_data_p_reads + pool_index_p_reads + pool_temp_index_p_reads + 
pool_xda_p_reads + pool_temp_xda_p_reads as physical_reads, member FROM 
TABLE(MON_GET_BUFFERPOOL('',-2)) AS METRICS) 
SELECT VARCHAR(bp_name,20) AS bp_name, logical_reads, physical_reads, CASE 
WHEN logical_reads > 0 THEN DEC((1 - (FLOAT(physical_reads) / 
FLOAT(logical_reads))) * 100,5,2) ELSE NULL END AS HIT_RATIO, member FROM 
BPMETRICS;





MON_GET_DATABASE

The MON_GET_DATABASE table function can be used to get the database metrics, and it returns 
the database information within the monitor infrastructure



MON_GET_TABLE : 

This table function can be used to get the Table metrics for one or more tables in the database



MON_GET_INDEX :

This table function can be used to get the index metrics for the table in a 
database



MON_GET_TABLESPACE :

This table function can be used to get the tablespace metrics in the database



MON_GET_TRANSACTION_LOG :

The MON_GET_TRANSACTION_LOG table function returns information about the transaction 
logging subsystem for the currently connected database.



MON_GET_CONNECTION

The MON_GET_CONNECTION table function returns metrics for one or more connections.



MON_GET_INSTANCE 

This table function can be used to get the metrics of the db2 instance related 



MON_GET_LATCH

The MON_GET_LATCH table function returns a list of all latches in the current member.







MON_GET_GROUP_BUFFERPOOL

The MON_GET_GROUP_BUFFERPOOL table function returns statistics about the group buffer pool (GBP)



MON_GET_MEMORY_POOL :

The MON_GET_MEMORY_POOL table function retrieves metrics from the memory pools contained within a 
memory set.



MON_GET_MEMORY_SET :

The MON_GET_MEMORY_SET table function retrieves metrics from the allocated memory sets, both 
at the instance level, and for all active databases within the instance.



MON_GET_DATABASE_DETAILS

The MON_GET_DATABASE_DETAILS table function retrieves database metrics and returns the information in 
an XML document.



MON_GET_AGENT :

The MON_GET_AGENT function returns a list of all agents, fenced mode processes (db2fmp processes), 
and system entities for the database. The list can be filtered to show information for a specified member, 
service class, or application.



MON_GET_APPLICATION_HANDLE

The MON_GET_APPLICATION_HANDLE scalar function returns the application handle of the invoking 
application.



MON_GET_APPL_LOCKWAIT :

The MON_GET_APPL_LOCKWAIT table function returns information about all locks that each 
application's agents (that are connected to the current database) are waiting to acquire.







MON_GET_CONTAINER

The MON_GET_CONTAINER table function returns monitor metrics for one or more table space containers.





MON_GET_HADR

This table function returns the metrics related to High availability Disaster Recovery information



MON_GET_PAGE_ACCESS_INFO

The MON_GET_PAGE_ACCESS_INFO table function returns information about bufferpool pages that are being 
waited on for a specified table. This is only applicable to Db2® pureScale® instances.



MON_GET_PKG_CACHE_STMT :

The MON_GET_PKG_CACHE_STMT table function returns a point-in-time view of both static and dynamic 
SQL statements in the database package cache.



MON_GET_PKG_CACHE_STMT_DETAILS :

The MON_GET_PKG_CACHE_STMT_DETAILS table function returns metrics for one or more package cache 
entries.

The metrics returned by the MON_GET_PKG_CACHE_STMT_DETAILS table function represent the accumulation of all 
metrics for statements in the package cache. Statement metrics are rolled up to the package cache upon activity 
completion.







THANK YOU 


