|
il
(0

I
|]|||

[
-l

|||I]II

DBZ LUW Powerful Monitoring Tools and Procedures DB2 LUW

* Db2 night show #264
* C Raghavendra
* Senior staff software engineer

* |BM Software labs Data and Al




Achievements in IBM

1. Hall of Fame Award in the year -2019
2. Outstanding Technical Achievement Award — 2018
3. IBM Rock Star Award — 2018
4.Michelin Client Award for Automation — 2018
5.Successfull Completion of ONC Data Center Move project — 2017
6.GCH Approved ideas for db2 luw automation ideas — 2017
7.Eminence and Excellence Cash Prize Award - 2017
8.Eminence and Excellence Cash Prize Award — 2016
9. Top Innovator and Mentor Award — 2016
10. Top Innovator and Mentor Award — 2015
11.Michelin Client Certification of Appreciation — 2014
12.Appreciation from Database Service Engineering Team — 2020
13.Db2 LUW python Tool kit contribution of a performance shell script appreciation — 2020
14.Top Innovator and Mentor Award — 2020
15.1BM Gold Champion Learner -2020
16. IBM Silver Champion Learner -2023
17.1DUG Bronze Member Award — 2021
18. IDUG Silver Member Award — 2022
19. Best Automation Award — 2013
20. Best Automation Award - 2014




I:H

|
I

Built-in routines and views

Built-in administrative routines and views provide a simplified programmatic interface to administer and use
databases and database objects through structured query language (SQL).

Built-in routines encompass procedures, scalar functions, and table functions.
You can run these built-in routines and views from an SQL-based application, a command line, or a command script.

To help ensure your successful use of the built-in routines and views, certain coding practices are recommended.

These practices are especially important because routines might change from release to release and also within
releases, such as through fix packs, as enhancements are made.

Authorizations for using built-in routines and views

For all built-in routines in the SYSPROC schema, you need EXECUTE privilege on the routine.

For all built-in views in the SYSIBMADM schema, you need SELECT privilege on the view.



|
|
Il
I

|

i
i

U
W
N
F
C
3

Built-in routines

For all built-in routines in the SYSPROC schema, you need EXECUTE privilege on the routine. You can use the following
query to check whether your authorization ID, or a group or a role to which you belong, has EXECUTE privilege

SELECT A.SPECIFICNAME, GRANTEE, GRANTEETYPE FROM SYSCAT.ROUTINEAUTH A, SYSCAT.ROUTINES R WHERE
A.SCHEMA = R.ROUTINESCHEMA AND A.SPECIFICNAME = R.SPECIFICNAME AND A.SCHEMA = 'SYSPROC' AND
R.ROUTINENAME = 'routine_name' AND A.EXECUTEAUTH <> 'N’

Built-in views

For all built-in views in the SYSIBMADM schema, you need SELECT privilege on the view. You can use the following query
to check whether your authorization ID, or a group or a role to which you belong, has SELECT privilege:

SELECT GRANTEE, GRANTEETYPE FROM SYSCAT.TABAUTH WHERE TABSCHEMA = 'SYSIBMADM' AND TABNAME =
'view_name' AND SELECTAUTH <> 'N'



\Hnnmm
I
I

iyl

Snapshot Routines and Views DB2 LUW

This grouping of routines and views can be used to retrieve information about the database and any connected applications at a
specific time.

Some of the important Routines and Views are :

QUERY_PREP_COST administrative view - Retrieve statement prepare time information

SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL table function - Retrieve dynsql logical group snapshot
information

SNAPUTIL_PROGRESS administrative view and SNAP_GET_UTIL_PROGRESS table function - Retrieve progress logical data
group snapshot information

SNAPTAB_REORG administrative view and SNAP_GET_TAB_REORG table function - Retrieve table reorganization snapshot
information

TOP_DYNAMIC_SQL administrative view - Retrieve information about the top dynamic SQL statements



|

|

[

My

DB2 LUW
QUERY_PREP_COST administrative view

The QUERY_PREP_COST administrative view returns a list of statements with information about the time required to prepare the statement.
The schema is SYSIBMADM.

Authorization
One of the following authorizations is required:

e SELECT privilege on the QUERY_PREP_COST administrative view

® CONTROL privilege on the QUERY_PREP_COST administrative view
e DATAACCESS authority

e DBADM authority

e SQLADM authority

e ACCESSCTRL authority

e SECADM authority

Default PUBLIC privilege
In a non-restrictive database, SELECT privilege is granted to PUBLIC when the view is automatically created.



U
|
” ||||||\

(e
[

[l

DB2 LUW

Example

Retrieve a report on the queries with the highest percentage of time spent on preparing.

SELECT NUM_EXECUTIONS, AVERAGE_EXECUTION_TIME_S, PREP_TIME_PERCENT,
SUBSTR(STMT_TEXT, 1, 30) AS STMT_TEXT, DBPARTITIONNUM
FROM SYSIBMADM.QUERY_PREP_COST ORDER BY PREP_TIME_PERCENT

The following is an example of output for this query.

NUM_EXECUTIONS AVERAGE_EXECUTION_TIME_S ...

1 record(s) selected.

Output for this query (continued).

. PREP_TIME_PERCENT STMT_TEXT DBPARTITIONNUM

0.0 select * from dbuser.employee C]



(i

SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL table function
SNAPDYN_SQL administrative view

This administrative view allows you to retrieve dynsql logical group snapshot information for the currently connected
database.

This view returns information equivalent to the GET SNAPSHOT FOR DYNAMIC SQL ON database- alias CLP command.
The schema is SYSIBMADM.

Authorization

One of the following authorizations is required to use the view:

e SELECT privilege on the SNAPDYN_SQL administrative view

e CONTROL privilege on the SNAPDYN_SQL administrative view
e DATAACCESS authority

e DBADM authority

e SQLADM authority

e ACCESSCTRL authority

e SECADM authority

I
Il

[l
all|

([t

(I

O
W
N
-
-
g



DB2 LUW

Example

Retrieve a list of dynamic SQL run on the currently connected database, ordered by the number of rows
read.

SELECT PREP_TIME_WORST, NUM_COMPILATIONS, SUBSTR(STMT_TEXT, 1, 60)
AS STMT_TEXT, DBPARTITIONNUM
FROM SYSIBMADM.SNAPDYN_SQL ORDER BY ROWS_READ

The following is an example of output from this query.

PREP_TIME_WORST NUM_COMPILATIONS SR

[ofoJofolofoRte]v:]

RRRRRRORP

40

9 record(s) selected.

Output from this query (continued).

s SEMIT TEXT

... select prep_time_worst, num_compilations, substrxr(stmt_text, :..
... select * from dbuser.employee o
... SET CURRENT LOCALE LC_CTYPE = 'en_Uus' o
-.. select prep_time_worst, num_compilations, substr(stmt_text, T



|

|

(e

|
My

DB2 LUW

SNAP_GET_DYN_SQL table function

The SNAP_GET_DYN_SQL table function returns the same information as the SNAPDYN_SQL administrative view, but allows you to
retrieve the information for a specific database on a specific database member, aggregate of all database members or all database
members.

This table function returns information equivalent to the GET SNAPSHOT FOR DYNAMIC SQL ON database-alias CLP command.

Authorization
One of the following authorizations is required:

e EXECUTE privilege on the SNAP_GET_DYN_SQL table function
e DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is also required: ¢ SYSMON
e SYSCTRL

e SYSMAINT

e SYSADM



Example

Retrieve a list of dynamic SQL run on the currently connected database, ordered by the number of rows

read.

SELECT PREP_TIME_WORST, NUM_COMPILATIONS, SUBSTR({(STMT_TEXT, 1, 60)
AS STMT_TEXT FROM TABLE (SNAP_GET_DYN_SQLC(C'",=-13) as T

ORDER BY ROWS_READ

The following is an example of output from this query.

PREP_TIME_WORST NUM_COMPILATIONS

10
599
15
7

LR T T T T T T T T S S S S T S T T S S SR
O T T T T T T T T SO T T T SO T T R S B A B T
LI T T T T S T R T E R R S S B B

ol loloJoJoJol fofoJojo] ool foJoJo] Yol o]

23 recoxrd(s) selected.
Output from this query (continued).

STMT_TEXT

drop event monitox act

<
P
[
c
m
0

CALL SAVE_EXEC_INFO (CAST(:HVOOO40 :HIOOO40

SET :tHVEOEOL1L7 tHIOEOL1L7 = RPAD(VARCHAR(:HVEOEE35 tHI®EEO35 ).,
SELECT COLNAME, TYPENAME FROM SYSCAT .COLUMNS WHERE TABMNAME=
DECLARE RES CURSOR WITH RETURN TO CALLER FOR SELECT R.TEXT F
SELECT PREP_TIME_WORST, NUM_COMPILATIONS, SUBSTR({(STMT_TEXT,

VALUES (:-HVOOO26 tHIOOO26 Sy dle :HVOOoe24a :HIOOOZ24 + 1) IN
VALUES (:HVOEO3S5 HIOEO3S5 += A, I HVOee24a IHIOEOZ24 + 1) IN
(1) INTO :HVOOE3S5 HIOEO3S5

SELECT TRIGNAME FROM SYSCAT.TRIGGERS WHERE TABMNAME='POLICY'
VALUES (:HVOEO24 :HIee24 +1, : HVEoeo22 tHIEO22 +1) INTO -
VALUES (41, CARDINALITY (CAST (:HVOOOA4AB :HIOOO040 AS "SYSIBMAD
CALL SYSPROC.SYSINSTALLOBJECTS('POLICY ' ', 'WvV", """, "")

SET :tHVEOEOL1L7 tHIOEOL1L7 = RPAD(VARCHAR(:-HVOEO3S5 tHI®Ee35 ),

SELECT TABSCHEMA, TABNAME, TYPE, STATUS, TBSPACEID, PROPERTY

AS "SYSIBMADM"

DB2 LUW



‘Hnnmm
1
il

SNAPUTIL_PROGRESS administrative view and SNAP_GET_UTIL_PROGRESS table function
SNAPUTIL_PROGRESS administrative view

Used in conjunction with the SNAPUTIL administrative view, the SNAPUTIL_PROGRESS administrative view provides the
same information as the LIST UTILITIES SHOW DETAIL CLP command.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required to use the view:

e SELECT privilege on the SNAPUTIL_PROGRESS administrative view

e CONTROL privilege on the SNAPUTIL_PROGRESS administrative view
e DATAACCESS authority

e DBADM authority

e SQLADM authority

e ACCESSCTRL authority

e SECADM authority

[l

([t

(I

O
W
N
-
-
g



SELECT UTILITY_ID, PROGRESS_TOTAL_UNITS, PROGRESS_COMPLETED_UNITS,
DBPARTITIONNUM FROM SYSIBMADM.SNAPUTIL_PROGRESS

The following is an example of output from this query.

UTILITY_ID PROGRESS_TOTAL_UNITS PROGRESS_COMPLETED_UNITS DBPARTITIONNU

1 record(s) selected.

(e



|

|

(e
[ |i:|[

DB2 LUW
SNAP_GET_UTIL_PROGRESS table function

The SNAP_GET_UTIL_PROGRESS table function returns the same information as the SNAPUTIL_PROGRESS administrative view, but

allows you to retrieve the information for a specific database on a specific database member, aggregate of all database members or all
database members.

Used in conjunction with the SNAP_GET_UTIL table function, the SNAP_GET_UTIL_PROGRESS table function provides the same
information as the LIST UTILITIES SHOW DETAIL CLP command.

Authorization
One of the following authorizations is required:

e EXECUTE privilege on the SNAP_GET_UTIL_PROGRESS table function ¢ DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is also required:
e SYSMON

e SYSCTRL

e SYSMAINT e SYSADM



Example

Retrieve details on the progress of utilities on the currently connect member.

SELECT UTILITY_ID, PROGRESS_TOTAL_UNITS, PROGRESS_COMPLETED_UNITS,
DBPARTITIONNUM FROM TABLE(SNAP_GET_UTIL_PROGRESS(-1)) as T

The following is an example of output from this query.

UTILITY_ID PROGRESS_TOTAL_UNITS PROGRESS_COMPLETED_UNITS DBPARTITIONNUM

1 record(s) selected.



[

SNAPTAB_REORG administrative view and SNAP_GET_TAB_REORG table function

SNAPTAB_REORG administrative view

This administrative view allows you to retrieve table reorganization snapshot information for the currently
connected database.

Used with the SNAPTAB administrative view, the SNAPTAB_REORG administrative view provides the data equivalent
to the GET SNAPSHOT FOR TABLES ON database-alias CLP command.

The schema is SYSIBMADM.
Authorization

One of the following authorizations is required to use the view:

e SELECT privilege on the SNAPTAB_REORG administrative view

e CONTROL privilege on the SNAPTAB_REORG administrative view ® DATAACCESS authority
e DBADM authority

e SQLADM authority

I

I

DB2 LUW



DB2 LUW

Example

Select details on reorganization operations for all database members on the currently connected
database.

SELECT SUBSTR(TABNAME, 1, 15) AS TAB_NAME, SUBSTR(TABSCHEMA, 1, 15)
AS TAB_SCHEMA, REORG_PHASE, SUBSTR(REORG_TYPE, 1, 20) AS REORG_TYPE,
REORG_STATUS, REORG_COMPLETION, DBPARTITIONNUM
FROM SYSIBMADM.SNAPTAB_REORG ORDER BY DBPARTITIONNUM

The following is an example of output from this query.

TAB_NAME TAB_SCHEMA REORG_ PHASE
EMPLOYEE  DBUSER " REPLACE
EMPLOYEE DBUSER REPLACE
EMPLOYEE DBUSER REPLACE

3 record(s) selected.

Output from this query (continued).

REORG_TYPE REORG_STATUS REORG_COMPLETION DBPARTITIONNUM
RECLAIM+OFFLINE+ALLO COMPLETED SUCCESS 0]
RECLAIM+OFFLINE+ALLO COMPLETED SUCCESS 1

RECLAIM+0OFFLINE+ALLO COMPLETED SUCCESS 2



|

|

(e

|
I

DB2 LUW
SNAP_GET_TAB_REORG table function

The SNAP_GET_TAB_REORG table function returns the same information as the SNAPTAB_REORG administrative view, but allows
you to retrieve the information for a specific database on a specific database member, aggregate of all database members or all
database members.

Used with the SNAP_GET_TAB table function, the SNAP_GET_TAB_REORG table function provides the data equivalent to the GET
SNAPSHOT FOR TABLES ON database-alias CLP command.

Authorization

One of the following authorizations is required:
e EXECUTE privilege on the SNAP_GET_TAB_REORG table function ¢ DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is also required:
e SYSMON

e SYSCTRL

e SYSMAINT e SYSADM



Example

Select details on reorganization operations for database member 1 on the currently connected database.

SELECT SUBSTR(TABNAME, 1, 15) AS TAB_NAME, SUBSTR(TABSCHEMA, 1, 15)
AS TAB_SCHEMA, REORG_PHASE, SUBSTR(REORG_TYPE, 1, 20) AS REORG_TYPE,
REORG_STATUS, REORG_COMPLETION, DBPARTITIONNUM
FROM TABLE( SNAP_GET_TAB_REORG('', 1)) AS T

The following is an example of cutput from this query.

TAB_NAME TAB_SCHEMA REORG_PHASE REORG_TYPE

EMPLOYEE DBUSER REPLACE " RECLAIM+OFFLINE+ALLO

1 record(s) selected.

Output from this query (continued).

REORG_STATUS REORG_COMPLETION DBPARTITIONNUM

COMPLETED SUCCESS 2]

Select all information about a reorganization operation to reclaim extents from a multidimensional
clustering (MDC) or insert time clustering (ITC) table using the SNAP_GET_TAB_REORG table function.

db2 -v "select * from table(snap_get_tab_xreorg(''))"

TABNAME REORG_PHASE REORG_MAX_PHASE REORG_TYPE
T1 RELEASE 3 RECLAIM_EXTENTS+ALLOW_WRITE
REORG_STATUS REORG_COMPLETION REORG_START REORG_END

COMPLETED SUCCESS 2008-09-24-14.35.30.734741 2008-09-24-14.35.31.460674

DB2 LUW



|

|

[

|
I

TOP_DYNAMIC_SQL administrative view
DB2 LUW

The TOP_DYNAMIC_SQL administrative view returns the top dynamic SQL statements sortable by number of
executions, average execution time, number of sorts, or sorts per statement.

The queries returned by TOP_DYNAMIC_SQL administrative view are the queries that should get focus to ensure they
are well tuned.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:

e SELECT privilege on the TOP_DYNAMIC_SQL administrative view

e CONTROL privilege on the TOP_DYNAMIC_SQL administrative view
e DATAACCESS authority

e DBADM authority

e SQLADM authority

e ACCESSCTRL authority

e SECADM authority

In addition, to access snapshot monitor data, one of the following authorities is also required: ¢ SYSMON
e SYSCTRL

e SYSMAINT

e SYSADM



Example
Identify the top 5 most frequently run SQL. DB2 LUW

SELECT NUM_EXECUTIONS, AVERAGE_EXECUTION_TIME_S, STMT_SORTS,
SORTS_PER_EXECUTION, SUBSTR(STMT_TEXT,1,60) AS STMT_TEXT
FROM SYSIBMADM.TOP_DYNAMIC_SQL
ORDER BY NUM_EXECUTIONS DESC FETCH FIRST 5 ROWS ONLY

The following is an example of output for this query.

NUM_EXECUTIONS AVERAGE_EXECUTION_TIME_S STMT_SORTS
148 (0] a .
123 o e .
2 (0] 0 ...
1 (0] 8 qeo
1 (0] B

5 record(s) selected.

Output for this query (continued).

== SORTS PER_EXECUTTON ...

QOutput for this query (continued).

«-- STMT_TEXT

SELECT A.ID, B.EMPNO, B.FIRSTNME, B.LASTNAME, A.DEPT FROM E
SELECT A.EMPNO, A.FIRSTNME, A.LASTNAME, B.LOCATION, B.MGRNO
. SELECT A.EMPNO, A.FIRSTNME, A.LASTNAME, B.DEPTNAME FROM EMP
... SELECT ATM.SCHEMA, ATM.NAME, ATM.CREATE_TIME, ATM.LAST_WAIT,
... SELECT = FROM JESSICAE.EMP_RESUME



|

|

[

My

MONREPORT module

DB2 LUW
The MONREPORT module provides a set of procedures for retrieving a variety of monitoring data and generating text reports.

The schema for this module is SYSIBMADM.
The MONREPORT module includes the following built-in routines.

CONNECTION procedure : The connection report provides the monitor report for each connection

CURRRENT APPS procedure : The Current Applications report presents the current instantaneous state of processing of units of work,
agents, and activities for each connection. The report starts with state information summed across connections, followed by a section
for details for each connection.

CURRENTSAQL procedure : The Current SQL report lists the top activities currently running, as measured by various metrics.

DBSUMMARY procedure : The Summary report contains in-depth monitor data for the entire database, as well as key performance
indicators for each connection, workload, service class, and database member.

LOCKWAIT procedure : The Lock Waits report contains information about each lock wait currently in progress. Details include lock
holder and requestor details, plus characteristics of the lock held and the lock requested.

PKGCACHE procedure : The Package Cache report lists the top statements accumulated in the package cache as measured by various
metrics.



(e

Examples

The following examples demonstrate various ways to call the CONNECTION procedure.
This example produces a report for all connections, with data displayed corresponding to an interval of 30 seconds:

call monreport.connection(30);
This example produces a report for a connection with an application handle of 34. Data is displayed based on absolute
totals accumulated in the source table functions (rather than based on the current interval):

call monreport.connection(0, 34);

This next example produces a report for a connection with an application handle of 34. Data is displayed corresponding
to an interval of 10 seconds.

call monreport.connection(DEFAULT, 34);

The final example produces the default report: for all connections, with data displayed corresponding to an interval of
10 seconds:

call monreport.connection;



ml]H

([t

The following examples demonstrate various ways to call the DBSUMMARY procedure. DB2 LUW

The first example produces a report that displays data corresponding to an interval of 30 seconds.
call monreport.dbsummary(30);

The next example produces a report that displays data corresponding to an interval of 10 seconds (the
default value):

call monreport.dbsummary;



(]

The following examples demonstrate ways to call the CURRENTAPPS procedure:
call monreport.currentapps;

call monreport.currentapps();

The following examples demonstrate various ways to call the CURRENTSQL procedure.

The first example produces a report that shows activity metrics aggregated across all members:

call monreport.currentsql;

The next example produces a report that shows activity metrics specific to the activity performance on member number 4

call monreport.currentsql(4);



(e

The following examples demonstrate various ways to call the LOCKWAIT procedure:

DB2 LUW

call monreport.lockwait;

call monreport.lockwait();

The following examples demonstrate various ways to call the PKGCACHE procedure.
The first example produces a report based on all statements in the package cache, with data aggregated across all members:
call monreport.pkgcache;

The next example produces a report based on both dynamic and static statements in the package cache for which metrics have been
updated within the last 30 minutes, with data aggregated across all members:

call monreport.pkgcache(30);

The next example produces a report based on all dynamic statements in the package cache, with data aggregated across all
members:

call monreport.pkgcache(DEFAULT, 'd');

The next example produces a report based on both dynamic and static statements in the package cache for which metrics have been
updated within the last 30 minutes, with data specific to a member number 4:

call db2monreport.pkgcache(30, DEFAULT, 4);



(e

MON_GET Family of Functions

When | started working with DB2 (on versions 5 and 7), the only option for seeing what was going on in the database
was snapshots. | spent a fair amount of time parsing the data in snapshots with Perl scripts to filter out only the data |
wanted to see. Slowly, methods of using SQL to access snapshot data were introduced. First table functions for accessing
snapshot data, then SYSIBMADM views, and finally we have the MON_GET family of table functions.

Compared to Using Snapshot Data

One of the things | loved about snapshot data is that it covered or could easily cover a discrete time period. By default,
that time period was since database activation, but | could reset monitor switches and only see data since that reset.
The reset was specific to the session | was in, so other sessions would have other reset points. In fact, | ran scripts that
would reset the monitor switches, sleep for an hour, and then grab a set of snapshots. Keeping this data for a week or a
month, | then had a basis for comparison for any numbers | was looking at. Granted, this meant that | had a bunch of
text files out there to parse through, but grep can work wonders, and when it’s not enough there’s always Perl’s
powerful text-parsing capabilities.

There is no reset with data in SYSIBMADM views or monitoring table functions. The data is always since the last
database restart. One advantage of using the mon_get monitoring functions is that the collection of data is “in-memory”
and considered more lightweight than snapshots. It is also the strategic direction for IBM going forward, and new
elements and even table functions are constantly being added.



(e

How to Find what Table Functions are Available?

If | simply want a list of the available monitoring functions, | use this SQL

select substr(r.ROUTINENAME,1,48) as ROUTINENAME, substr(r.SPECIFICNAME,1,48) as SPECIFICNAME from
sysibm.sysroutines r where r.function_type='T' and substr(rROUTINENAME,1,4) in ('SNAP','MON_','"ENV_','COMP’)
and substrb(r.SPECIFICNAME,-3,3) not in ('V91', 'V95', 'V97', ' AP') order by
r.LROUTINESCHEMA,r.ROUTINENAME,r.SPECIFICNAME;

select substr(P.ROUTINENAME,1,48) as ROUTINENAME, substr(P.SPECIFICNAME,1,48) as SPECIFICNAME, case when
P.ROWTYPE in ('B','O",'P') then CHAR('IN',3) else CHAR('OUT",3) end as IN_OUT, cast(p.ORDINAL as char(3)) as ORD,
substr(P.PARMNAME,1,40) as PARMNAME, substr(PTYPENAME,1,16) as TYPE from sysibm.sysroutines,
sysibm.sysroutineparms p where p.routineschema=r.routineschema and p.routinename=r.routinename and
p.specificname=r.specificname and r.function_type='T' and rROUTINENAME='MON_GET_TABLE' order by
P.ROUTINESCHEMA,P.ROUTINENAME,P.SPECIFICNAME,IN_OUT,P.ORDINAL;



Critical Table Functions that can be used in DB2 LUW

S 8 CO R S e N

=
= O

B R R R R
o Ul WN

MON_GET_BUFFERPOOL :
MON_GET_DATABASE:
MON_GET TABLE :
MON_GET_INDEX:
MON_GET_TABLESPACE:
MON_GET_TRANSACTION_LOG
MON_GET_CONNECTION
MON_GET_INSTANCE
MON_GET_LATCH

. MON_GET_GROUP_BUFFERPOOL
. MON_GET_MEMORY_POOL

. MON_GET_MEMORY_SET

. MON_GET_DATABASE_DETAILS

. MON_GET_AGENT

. MON_GET_APPLICATION_HANDLE
. MON_GET_APPL_LOCKWAIT

17.MON_GET_CONTAINER
18.MON_GET_HADR
19.MON_GET_PAGE_ACCESS_INFO
20.MON_GET_PKG_CACHE_STMT
21.MON_GET_PKG_CACHE_STMT_DETAILS

(e

I
il

[l

([t

(I

O
W
N
F
C
g



‘HHHIII”'
;

(i
M

MON_GET_BUFFERPOOL

DB2 LUW
The above table function can be used to get the bufferpool metrics and returns monitor metrics for one or
more buffer pools.

Example :
Computing the Bufferpool Hit Ratio

WITH BPMETRICS AS

( SELECT bp_name, pool_data_l_reads + pool_temp_data_1l_reads +
pool_index_1_reads + pool_temp_index_1_reads + pool_xda_l_reads +
pool_temp_xda_l_reads as logical_reads, pool_data_p_reads +
pool_temp_data_p_reads + pool_index_p_reads + pool_temp_index_p_reads +
pool_xda_p_reads + pool_temp_xda_p_reads as physical_reads, member FROM
TABLE (MON_GET_BUFFERPOOL('',-2)) AS METRICS)

SELECT VARCHAR(bp_name,20) AS bp_name, logical_reads, physical_zreads, CASE
WHEN logical_reads > O THEN DEC((1 - (FLOAT(physical_zreads) /
FLOAT(logical_reads))) * 100,5,2) ELSE NULL END AS HIT_RATIO, member FROM
BPMETRICS;



]
il
i

I
I
all|
i

|
[l ”

H\

DB2 LUW

The following is an example of output from this query.

BP_NAME LOGICAL_READS PHYSICAL_READS HIT_RATIO MEMBER

IBEMDEFAULTBP
IBMSYSTEMBP4K
IBMSYSTEMBPEK
IBMSYSTEMBP16K
IBMSYSTEMBP32K

5 record(s) selected.




MON_GET_DATABASE

DB2 LUW
The MON_GET_DATABASE table function can be used to get the database metrics, and it returns

the database information within the monitor infrastructure

Examples

1. Determine the activation time, activation state, total connections, and connection high water mark for the current database on all

members:

SELECT DB_CONN_TIME, DB_ACTIVATION_ . AL_CONS, CONNECTIONS_TOP
FROM TABLE (MON_GET ATABASE (-2))

This query returns the following output:

DB_CONN_TIME DB_ACTIVATION_STATE TOTAL _CONS CONNECTIONS_TOP

Get the explicit hierarchical locking state for the database from all database members.

SENEET MENEER
DATA_SHARING_REMOTE_LOCKWAIT_COUNT AS DSRL_COUNT,
DATA_SHARING_REMOTE_LOCKWAIT_TIME AS DSRL_TIME
FROM TABLE (MON_GET_DATABASE(-2))

The query returns the following output, indicating that one table exited from a "NOT_SHARED" state, taking approximately 10 second

do so.

MEMBER DSRL_COUNT S RISSSTEEME




MON_GET_TABLE :
DB2 LUW

This table function can be used to get the Table metrics for one or more tables in the database

Examples

Ad. List the activity on all tables accessed =3 a mbers, ordered by highest n of reads.

SELECT warchazx(tat a ., 2a) tab h
varchar(tabname,20) as tabname .
sum(rows Tead) as total rows xead
_dinserted) tal rows_inserted,
—_updated) total_xows_updated,
sum(rows_deleted) total rows_deleted
FROM TABLE (MON GET TABLE( SRS S A
GROUP BY t >sche tabns:
ORDER BY total_xyows_xread DESC

The following is an example of ocutput from this query.

TABSCHEMA TABNAME

SYSHISTO
SYSWORKL
SYSROUTI

DOOQOBRFFEENNNWOW

SYSXMLPA

selected.

AL_ROWS_UPDATED TOTAL_ROWS_DELETED




MON_GET_INDEX : DB2 LUW

This table function can be used to get the index metrics for the table in a
database

Example

Identify the most frequently used indexes on the DMEXTOO2.TABLEL table, since the last database activation:

SELECT VARCHAR(S.INDSCHEMA, 10) AS INDSCHEMA,
VARCHAR (S .INDNAME, 10) AS INDNAME,
T.DATA_PARTITION_ID,

T.MEMBER,
T.INDEX_SCANS,
T.INDEX_ONLY_SCANS

FROM TABLE (MON_GET_INDEX( ' 'DMEXTOQG2', "TABLE1l', -2)) as T, SYSCAT.INDEXES AS S

WHERE T.TABSCHEMA = S.TABSCHEMA AND
T.TABNAME = S.TABNAME AND
T.ITD = S.IID

ORDER BY INDEX_SCANS DESC

The following is an example of output from this query.

INDSCHEMA INDNAME DATA_PARTITION_ID MEMBER INDEX_SCANS INDEX_ONLY_SCANS

DMEXTOO2 INDEX3
DMEXTOO2 INDEX4
DMEXTOO2 INDEXL
DMEXTOO2 INDEX2
DMEXTOO2 INDEXS5
DMEXTOO2 INDEX6&6

[oNcNoNoNoNo]

6 recorxrd(s) selected.



MON_GET_TABLESPACE :

This table function can be used to get the tablespace metrics in the database

Example «~

List table spaces ordered by number of physical reads from table space containers.

SELECT wvarxrcharxr(tbsp_name, 30) as tbsp_name,
membex,
tbsp_ _type,
pool_data_p_reads

FROM TABLE(MON_GET_TABLESPACEC('',-2)) AS t

ORDER BY pool_data_p_xreads DESC

The following is an example of output from this query.

TBSP_ NAME TBSP_TYPE POOL_DATA_P_READS

SYSCATSPACE
USERSPACEL
TEMPSPACEZL

3 record(s) selected.




I
[l

all

([t

DB2 LUW
MON_GET_TRANSACTION_LOG :

The MON_GET_TRANSACTION_LOG table function returns information about the transaction
logging subsystem for the currently connected database.

Example

Select MEMBER, CUR_COMMIT_DISK_LOG_READS, CURRENT_ACTIVE_LOG, ™
APPLID_HOLDING_OLDEST_XACT fxrom table(mon_get_ _transaction_log(-1)) as
ordexr by membexr asc

MEMBER CUR_COMMIT_DISK_LOG_READS CURRENT_ACTIVE_LOG APPLID_HOLDING_




MON_GET_CONNECTION
DB2 LUW

The MON_GET_CONNECTION table function returns metrics for one or more connections.

Example «

Display connections that return the highest volume of data to clients, ordered by

rows returned.

SELECT application_handle,

rows_xretuxrned,

tcpip_send_volume
FROM TABLE (MON_GET_CONNECTION(cast(NULL as bigint), -2)) AS
ORDER BY xows_xxetuxrned DESC

The following is an example of output from this query.

APPLICATION_HANDLE ROWS_RETURNED TCPIP_SEND_VOLUME

1 recoxrd(s) selected.




:
prild
“||||||\

([t

(]

[l

‘H

MON_GET_INSTANCE DB2 LUW

This table function can be used to get the metrics of the db2 instance related

Example

Determine the start time and total number of current connections on all

members:;

SELECT DB2START_TIME, TOTAL_CONNECTIONS
FROM TABLE (MON_GET_INSTANCE(-2));

This query returns the following output:
DB2START_TIME TOTAL_CONNECTIONS

204 25195 HE=diSEE S O HEISEROI0E) (6




MON_GET_LATCH DB2 LUW

The MON_GET_LATCH table function returns a list of all latches in the current member.

ad. Call the MON_GET_LATCH table function to retrieve all latch information in databases withh connections, on all
members:

SELECT SUBSTR{(LATCH_NAME ,1,40) LATCH_NAME,
SUBSTR(MEMORY_ADDRESS .1 .,20) MEMORY_ADDRESS.,
EDU_ID,
SUBSTRC(EDU_NAME ,1,20)> EDU_NAME,
APPLICATION_HANDLE
MEMBER ,
LATCH_STATUS ,
LATCH_WAIT_TIME

FROM TABLE ( MON_GET_LATCHC ORDPER BY LATCH_NAME, LATCH_STATUS

This query returns the following coutput:

LATCH_NAME MEMORY_ADDRESS

SQLO_LT_SQLB_POOL_CB__ptfLotch OXxT7OOOOOO5351AA4A40

SQLO_LT_SQLB_POOL_CB__xreadlLotch Ox7OOEORE5351A3CE

SQLO_LT_SQLEB_POOL_CB__xeadlLotch OXx7O0000RO5351AZCO z7oaa
SQLO_LT_SQLB_PTBL__pool_table_latch O<x7OEOOOEOAIOSBII1O 379aa
SQLO_LT_SQLEB_PTBL__pool_table_latch OXx7OOOOO0ALIOSBEOLO z7vesa
SQLO_LT_SQLE_PTBL__poocl_table_latch O<x7O0OEEOEAILOSBED 1O 327140
SQLO_LT_SQLE_KRCB__EDUChainLatch OXx78SO00000O00AT2EAC 373927
SQLO_LT_preventSuspendIOLotch OxXxT7TSOOOO ases1 3eaaa
SQLO_LT_sqgewlLDispatchexr__m_tunexLatch OxX780OOEEAICE3A446 1029

tput for query (continued):

EDU_NAME APPLICATION_HANDLE

-

db2Zagsent (SAMPLE)
dbZagent (SAMPLE)
dbZzZagen- C(SAMPLE D
dbZagent (SAMPLE)D
dbZagent (SAMPLE)D
dbZagent (SAMPLE)
dbZagsent (SAMPLE)D
dbzZagsent (SAMPLE)
dbZwlm

{oNcoRoNoRoNo}o]
IIIZZIZII




2. Call the MON_GET_LATCH table function to determine the latches that are contested.

DB2 LUW

SELECT SUBSTR(LATCH_NAME,1,40) LATCH_NAME,
SUBSTR(MEMORY_ADDRESS,1,20) ADDRESS,
EDU_ID,
SUBSTR(EDU_NAME,1,20) EDU_NAME,
APPLICATION_HANDLE,
MEMBER,
LATCH_STATUS,
LATCH_WAIT_TIME
FROM TABLE ( MON_GET_LATCH( CLOB('<LATCH_STATUS>C</LATCH_STATUS>"'),
ORDER BY LATCH_NAME, LATCH_STATUS

This query returns the following output:

LATCH_NAME ADDRESS

SQLO_LT_SQLB_POOL_CB__readLotch Ox70000005351A3CO
SQLO_LT_SQLB_POOL_CB__readlLotch Ox70000005351A3CO
SQLO_LT_SQLB_PTBL__pool_table_latch Ox70000004108B910
SQLO_LT_SQLB_PTBL__pool_table_latch Ox70000004108B910
SQLO_LT_SQLB_PTBL__pool_table_latch Ox70000004108B910

LATCH_STATUS LATCH_WAIT_TIME

db2agent (SAMPLE)
db2agent (SAMPLE)
db2agent (SAMPLE)
db2agent (SAMPLE)
db2agent (SAMPLE)

record(s) selected.




3. The previous output shows two latches that are contested by applications. To retrieve only the
SQLO_LT_SQLB_PTBL__pool_table_latch Llatch, specify the latch_name value in the search_axgs
argument to return the applications that are contesting this latch. DB2 LUW

SELECT SUBSTR(LATCH_NAME,1,40) LATCH_NAME, =

SUBSTR (MEMORY_ADDRESS,1,20) ADDRESS,
EDU_ID,
SUBSTR (EDU_NAME,1,20) EDU_NAME,
APPLICATION_HANDLE,
MEMBER,
LATCH_STATUS,
LATCH_WAIT_TIME

FROM TABLE (
MON_GET_LATCH( CLOB('<LATCH_STATUS>C</LATCH_STATUS>

<LATCH_NAME>SQLO_LT_SQLB_PTBL__POOL_TABLE_LATCH</LATCH_NAME>'),
)
ORDER BY LATCH_NAME, LATCH_STATUS

This query returns the following output:

LATCH_NAME ADDRESS
SQLO_LT_SQLB_PTBL__pool_table_latch 0x70000004108B910

SQLO_LT_SQLB_PTBL__pool_table_latch Ox70000004108B910
SQLO_LT_SQLB_PTBL__pool_table_latch Ox70000004108B9160

Output for query (continued):

EDU_NAME APPLICATION_HANDLE MEMBER LATCH_STATUS LATCH_WAIT_TIME
db2agent (SAMPLE)
db2agent (SAMPLE)
db2agent (SAMPLE)

3 record(s) selected.




MON_GET_GROUP_BUFFERPOOL

The MON_GET_GROUP_BUFFERPOOL table function returns statistics about the group buffer pool (GBP)

Example

If the group buffer pool (GBP) does not have sufficient space when attempting to register a page or write a page to
the GBP, a GBP_FULL error occurs.

The following example returns the number of times the GBP_FULL error is encountered from all members.

SELECT SUM(T.NUM_GBP_FULL) AS NUM_GBP_FULL
FROM TABLE(MON_GET_GROUP_BUFFERPOOL(-2)) AS T

The following is an example of output from this query.

NUM_GBP_FULL

1 recorxrd(s) selected.

If the value of NUM_GBP_FULL increases by more than one per minute, then the current size of the GBP likely does

not meet your needs. In this case, increase the size of the GBP with the command:

UPDATE DB CFG USING CF_GBP_SIZE <new_size> =

For this command, the value of <new_size> grows the group buffer pool to a size sufficient to slow or stop the

increasing number of GBP_FULL errors.




MON_GET_MEMORY_POOL :

The MON_GET_MEMORY_POOL table function retrieves metrics from the memory pools contained within a

memory set.

Example

Example 1: Retrieve memory set metr

varchar(memorxry_ _set_type,
varchar(memoxy pool_ tvype, 20)
varchax (db_mname ,

2C

memory_ pool_used,
memory pool__used_hwm

FROM TABLE (C

MON_GET_MEMORY_POOL (NULL ,

AS

20) AS
AS
dbname ,

example of output from this query.

SET T NYIEE

DATABASE
DATABASE
DATABASE
DATABASE
DATABASE
DATABASE
APPLICATION
APPLICATION

21 xecoxd(s)

POOL_TYPE

FCM_LOCAL
FCM_SESSION
FCM_CHANNE L
FCMmBP
FCM_CHANNE L
MONITOR
RESYNC

0SS _TRACKER
APM

BSU
KERNEL_CONTROL
EDU

MISC
WITITLIT Y
PACKAGE_CACHE
XMLCACHE
CAT_CACHE
BP

BP
APPLICATION
APPLICATION

selecte

TESTDB
TESTDB
TESTDB
TESTDB
TESTDB
TESTDB
TESTDEBE
TESTDB

set_tyvpe,
Pool_ type.

CURRENT_SERVER,

=2

EMORY_POOL_USED

539324
983040
35520512
458752
262144
7667712
13041664
3932160
3932160
655360
655360
65536
9833040
196608
458752
850132992
65536060
2927 6
262144

cs for the current instance and the currently connected database.

MEMORY_POOL_USED_HWM

s9824
oO830440
35520512
589824
262144
Toe6eT7T7A2
A32383272
4390912
4390912
655360
655360
65536
o9sS3040
196608
458752
132992
655360
393216
262144




|
|

(]
]||II

‘H
|||||1||||||\

I

I
[l
alf|

MON_GET_MEMORY_SET : DB2 LUW

The MON_GET_MEMORY_SET table function retrieves metrics from the allocated memory sets, both
at the instance level, and for all active databases within the instance.

Example
Example 1: Retrieve memory set metrics for the current instance and the currently connected database.

SELECT wvarchar(memory_set_type, 20) as set_type,
varchar(db_name, 20) as dbname,
memoxry_set_used,
memoxry_set_used_hwm

FROM TABLE(

MON_GET_MEMORY_SET(NULL, CURRENT_SERVER, -2))

An example of output from this query.

DBNAME MEMORY_SET_USED MEMORY_SET_USED_HWM

PRIVATE
DATABASE TESTDB

928000 928000
APPLICATION TESTDB

1472 2752

5 recorxrd(s) selected




MON_GET_DATABASE_DETAILS DB2 LUW

The MON_GET_DATABASE_DETAILS table function retrieves database metrics and returns the information in
an XML document.

Example

Retrieve information about rows_read, num_ locks_waiting, total_cpu_time, and direct_reads, at the database
level on the current member.

SELECT wlmetrics.member as membex,
detmetrics.xrows_read as rows_read,
detmetrics.num_locks_waiting as num_locks_waiting,
detmetxrics.total_cpu_time as total_ cpu_time,
detmetrics.direct_reads as direct_reads
FROM TABLE (MON_GET_DATABASE_DETAILS (NULL)) AS WLMETRICS,
XMLTABLE (XMLNAMESPACES( DEFAULT 'http://www.ibm.com/xmlns/prod/db2/mon"'),
'$detmetric/db2_database'
PASSING XMLPARSE (DOCUMENT WLMETRICS.DETAILS) as "detmetxic"
COLUMNS "ROWS_READ" INTEGER PATH 'system_metrics/xrows_xread',
“"NUM_LOCKS_WAITING" INTEGER PATH 'system_metxics/lock_waits',
“"TOTAL_CPU_TIME" INTEGER PATH 'system_metrics/total_cpu_time',
"DIRECT_READS" INTEGER PATH 'system_metrics/direc_xreads'
) AS DETMETRICS;

This query returns the following output:

MEMBER ROWS_READ NUM_LOCKS_WATTING TOTAL_CPU_TIME DIRECT_READS

2330014




MON_GET_AGENT : DB2 LUW

The MON_GET_AGENT function returns a list of all agents, fenced mode processes (db2fmp processes),
and system entities for the database. The list can be filtered to show information for a specified member,

service class, or application.

Examples

1. The following query returns a list of agents that are associated with application handle 1 for all database
members. You can determine the application handle by using the LIST APPLICATIONS command or the

MON_GET_CONNECTION table function.

SELECT SUBSTR(CHAR(APPLICATION_HANDLE) ,1,7) AS APPHANDLE,
SUBSTR (CHAR (MEMBER) ,1,4) AS MEMB,
SUBSTR(CHAR(AGENT_TID) ,1,9) AS AGENT_TID,
SUBSTR(AGENT_TYPE,1,11) AS AGENTTYPE,
SUBSTR(AGENT_STATE,1,10) AS AGENTSTATE,

SUBSTR (REQUEST_TYPE,1,12) AS REQTYPE,
SUBSTR(CHAR(CUOW_ID) ,1,6) AS UOW_ID,
SUBSTR(CHAR(ACTIVITY ID),1,6) AS ACT_ID

FROM TABLE (MON_GET_AGENT(CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(C128)), 1, -2)) AS SCDETAILS

ORDER BY APPHANDLE, MEMB, AGENT_TID

Sample output is as follows:

APPHANDLE MEMB AGENT_TID AGENTTYPE AGENTSTATE REQTYPE

COORDINATOR
SUBAGENT SUBSECTION: 1
SUBAGENT SUBSECTION:2




MON_GET_APPLICATION_HANDLE DB2 LUW

The MON_GET_APPLICATION_HANDLE scalar function returns the application handle of the invoking
application.

Example

The MON_GET_APPLICATION_HANDLE scalar function can be used to pass in the application handle of the

current session into monitoring functions which filter based on the application handle, such that the session can
access its own monitoring information. For example:

select application_handle, application_name, application_id, membexr, rows_read
from table(sysproc.mon_get_connection(sysproc.mon_get_application_handle(), -1))
as conn

The following is an example of output from this query.

APPLICATION_HANDLE APPLICATION_NAME APPLICATION_ID MEMBER

1 recoxd(s) selected.




I
I

MON_GET_APPL_LOCKWAIT :

DB2 LUW

The MON_GET_APPL_LOCKWAIT table function returns information about all locks that each
application's agents (that are connected to the current database) are waiting to acquire.

In this sample scenario, the MON_GET_APPL_LOCKWAIT table function is used to investigate a hung application
for the session authorization ID USER1.

1. Use the MON_GET_CONNECTION table function to look up the application handle for all connections with the
SESSION_USER value of USER1:

SELECT COORD_PARTITION_NUM, APPLICATION_HANDLE

FROM TABLE (MON_GET_CONNECTION(NULL,-2))

T
WHERE SESSION_USER = 'USER1'

This query returns the following output:

COORD_PARTITION_NUM APPLICATION_HANDLE

431136

1 record(s) selected.




DB2 LUW

2. Use the MON_GET_AGENT table function to obtain current information about all agents working for this
connection, on all database partitions:

SELECT SUBSTR(CHAR(DBPARTITIONNUM) ,1,3) AS DBPART,
SUBSTR (CHAR (APPLICATION_HANDLE) ,1,7) AS APP_ID,
SUBSTR (CHAR (WORKLOAD_OCCURRENCE_ID),1,7) AS WLO_ID,
SUBSTR(CHAR(AGENT_TID),1,7) AS AGENT_ID,
SUBSTR(CHAR(AGENT_TYPE) ,1,12) AS AGENT_TYPE,
SUBSTR(AGENT_STATE,1, 8) AS STATE,
SUBSTR(EVENT_TYPE,1, 8) AS EV_TYPE,
SUBSTR(EVENT_OBJECT,1,12) AS EV_OBJECT

FROM TABLE(MON_GET_AGENT('','',131130,-2))

ORDER BY AGENT_TYPE, DBPART

This query returns the following output:

AGENT_ID AGENT_TYPE i EV_OBJECT

131130 COORDINATOR ACTIVE REQUEST
131130 PDBSUBAGENT ACTIVE ACQUIRE LOCK
1371136 PDBSUBAGENT ACTIVE ACQUIRE LOCK
131136 PDBSUBAGENT ACTIVE ACQUIRE LOCK

4 recoxrd(s) selected.

An event of type ACQUIRE on an event object of type LOCK indicates a lock wait scenario. Now you can
investigate which object is being waited for and which process is holding the lock on it.




DB2 LUW

3. To determine all locks that the application is waiting for, call the MON_GET_APPL_LOCKWAIT table function
with application handle 131130 and member -2 as input parameters.

SELECT lock_name, Tj
hld_member AS member,
hld_agent_tid as TID,
hld_application_handle AS HLD_APP FROM
TABLE (MON_GET_APPL_LOCKWAIT (131130, -2))

This query returns the following output:

LOCK_NAME MEMBER TID
00030005000000000280000452
00030005000000000280000452
00030005000000000280000452

3 recoxrd(s) selected.

4. Call the MON_GET_CONNECTION table function to find out more about the application that is holding the lock
(this application has an application handle of 65564).

SELECT SYSTEM_AUTH_ID, APPLICATION_NAME AS APP_NAME, I=)
WORKLOAD_OCCURRENCE_STATE AS WL_STATE

FROM TABLE (MON_GET_CONNECTION(NULL,-2))

WHERE APPLICATION_HANDLE = 65564

This query returns the following output:

SYSTEM_AUTH_ID APP_NAME WL_STATE

ZURBIE




MON_GET_CONTAINER

DB2 LUW
The MON_GET_CONTAINER table function returns monitor metrics for one or more table space containers.

Example

Example 1: List containers on all database members that have the highest read time.

SELECT wvarchar(containexr_ name, 70) as containexr_name,
varchax (tbsp_name,20) as tbsp_name,
pool_read_time

FROM TABLE(MON_GET_CONTAINERC(C'"',-2)) AS t

ORDER BY pool_xread_time DESC

The following is an example of output from this query.

CONTAINER_NAME

/home /hotel55/swalkty/swalkty /NODEO@OOO/TEST /TOOOEOEO /COOOOEOO .CAT
/home/hotel55/swalkty/swalkty /NODE@OOO/TEST /TOOOEBO2/COOOOEO0O . LRG
/home/hotel55/swalkty/swalkty /NODE@OOO/TEST /TOOREOOL/COOOOOOO . TMP

3 recoxd(s) selected.

Output for query (continued).

TBSP_NAME POOL_READ_TIME

SYSCATSPACE
USERSPACEL
TEMPSPACEL




Example 2: List any containers that are not accessible.

DB2 LUW

SELECT varxrcharx(containexr_name, 70) as containexr_name
FROM TABLE (MON_GET ONTAINERC ' ',
WHERE accessible

@ recorxrd(s) selected.

Example 3: List utilization of container file systems, ordered by highest utilization.

SELECT varchar(container_name, 65) as container_name,
£fs_id,
fs_used_size,
fs_total_size,
CASE WHEN fs_total_size > 0
THEN DEC (100* (FLOAT(fs_used_size) /FLOAT(fs_total_size))
EIESENDEC (=520
END as utilization
FROM TABLE (MON_GET_CONTAINER(C'"',-1)) AS t
ORDER BY wutilizatiom DESC

The following is an example of output from this query.

/home/hotel55/swalkty/swalkty/NODE@OOO/TEST/TOOOOOO0/COOOEEOO0O.CAT
/home/hotel55/swalkty/swalkty /NODE@OOO/TEST/TOOEOOO1/COOOEEOO0O . TMP
/home /hotel55/swalkty/swalkty /NODEGOOO/TEST/TEOOOOOO2/COGEEOOO . LRG

3 recoxd(s) selected.

Output for query (continued).

FS_USED_SIZE FS_TOTAL_SIZE UTILIZATION

106879311872 317068410880 23. 70
106879311872 317068410880 33.70
106879311872 317068410880 33.70




MON_GET_HADR DEAEECY

This table function returns the metrics related to High availability Disaster Recovery information

Examples

A SELECT HADR_ROLE, STANDBY_TD, HADR_STATE, wvarchar(PRIMARY_MEMBER_HOST ,20)
as PRIMARY_MEMBER_HOST, wvaxrchax(STANDBY_MEMBER_HOST ,20)
as STANDBY_MEMBER_HOST from table(MON_GET_HADR(NULL))

The following is an example of ocutput from this query.

HADR_ROLE STANDBY_ID HADR_STATE PRIMARY_MEMBER_HOST
hostP.ibm.
2 REMOTE_CATCHUP hostP .ibm.com
PRIMARY 3 REMOTE_CATCHUP hostP . ib com
STANDBY_ _MEMBER_HOST
hostsldl.ibm.com
hostS2.ibm.com

hosts3.ibm.com

3 recoxrd(s) selected.

Query is issued to a primary database with 3 standbys in which 3 rows are returned. Each row represents a primary-standby log shipping
channel. The HADR_ROLE column represents the role of the database to which the query is issued. Therefore it is PRIMARY on all rows.

SELECT HADR_ROLE, STANDBY_ID, HADR_STATE, varchax(PRIMARY_MEMBER_HOST ,20)
as PRIMARY_MEMBER_HOST, wvarchar(STANDBY_MEMBER_HOST ,20)
as STANDBY_MEMBER_HOST fxrom table (MON_GET_HADR(NULL))

The following is an example of output from this qquery.

HADR_ROLE STANDBY _ID HADR_STATE PRIMARY_ _MEMBER_HOST
STANDBY hostP.ibm.com

STANDBY_MEMBER_HOST




MON_GET_PAGE_ACCESS_INFO DB2 LUW

The MON_GET_PAGE_ACCESS_INFO table function returns information about bufferpool pages that are being
waited on for a specified table. This is only applicable to Db2® pureScale® instances.

Example

This example returns page reclaim counts for all tables in schema BASETAB on the currently connected member. It shows that applications
are waiting for pages for table TABLEL (an example of what could cause this situation is updating different rows on the same page from two
different members).

A M AS NAM
SUBSTR(OBJTYPE,1,5) AS TYPE,
PAGE_RECLAIMS_X AS PGRCX,
PAGE_RECLAIMS_S AS PGRCS,
SPACEMAPPAGE_PAGE_RECLAIMS_X AS SMPPGRCX,
SPACEMAPPAGE_PAGE_RECLAIMS_S AS SMPPGRCS
FROM TABLE( MON_GET_PAGE_ACCESS_INFO('BASETAB', NULL, NULL) ) AS WAITMETRICS

ORDER BY NAME;

The following is an example of output from this query.

TYPE PGRCX PGRCS SMPPGRCX SMPPGRCS

TABLE1L TABLE
TABLE1l INDEX
TABLE2 TABLE
TABLE2 INDEX




MON_GET_PKG_CACHE_STMT : DB2 LUW

The MON_GET_PKG_CACHE_STMT table function returns a point-in-time view of both static and dynamic
SQL statements in the database package cache.

Example

List all the dynamic SQL statements from the database package cache ordered by the average CPU time.

db2 SELECT MEMBER,
SECTION_TYPE ,
TOTAL_CPU_TIME/NUM_EXEC_WITH_METRICS as
AVG_CPU_TIME, EXECUTABLE_ID
FROM TABLE (MON_GET_PKG_CACHE_STMT ( 'D', NULL, NULL, -2)) as T
WHERE T.NUM_EXEC_WTITH_METRTCS <> 0 ORDER BY AVG_CPU_TTIME

The following is an example of output from this query.

EXECUTABLE_TD

X '01lOO0O00PRROOEOEO7A0OOOOCROEOOOEOOOPOOOEEEE200200811261 71554951791 "
X '01000000000EROEON790000OCROOOEROEOOEOONOEENB20020081126171533551120"
X '010000000POEREEON7CHOOOOOOROOOOROOAOEOONOEEE20020081126171720728997 "

0EOEOOEEAEO2020081126171657272914"
*x'0100000000OCEEEO7DOOOOEROANONOOOAEOROOEOE200200L81126172409987719 "

5 recoxrd(s) selected.

With the earlier output, you can use the executable_id to find out the details about the most expensive statement (in terms of the average
CPU time):

db2 SELECT STMT_TEXT FROM TABLE(MON_GET_PKG_CACHE_STMT =]
(null, x'O010000000000EEOEO7DEEOEOOEOEEOOEOOEOOOOOEE20020081126172409987719"', null,

STMT_TEXT

SELECT = FROM EMPLOYEE




MON_GET_PKG_CACHE_STMT_DETAILS :

The MON_GET_PKG_CACHE_STMT_DETAILS table function returns metrics for one or more package cache
entries.

The metrics returned by the MON_GET_PKG_CACHE_STMT_DETAILS table function represent the accumulation of all
metrics for statements in the package cache. Statement metrics are rolled up to the package cache upon activity
completion.

||

Ijrom

)
=)
N
(o
c
=



Examples DB2 LUW

The first example demonstrates how to examine the package cache and select the 10 statements that have read and returned the largest
number of rows. Additionally, the results show the cumulative amount of time spent executing each of these statements (in the
STMT_EXEC_TIME output column).

SELECT SUBSTR(DETMETRICS.STMT_TEXT, 1, 40) STMT_TEXT,
DETMETRICS.ROWS_RETURNED,
DETMETRICS.STMT_EXEC_TIME
FROM TABLE(MON_GET_PKG_CACHE_STMT_DETAILS(CAST(NULL AS CHAR(1)),
CAST(NULL AS VARCHAR(32) FOR BIT DATA),
CAST(NULL AS CLOB(1K)), -1)) AS STMT_METRICS,
XMLTABLE (XMLNAMESPACES( DEFAULT 'http://www.ibm.com/xmlns/prod/db2/mon'),
'$DETMETRICS/db2_pkg_cache_stmt_details' PASSING
XMLPARSE (DOCUMENT STMT_METRICS.DETAILS) as "DETMETRICS"
COLUMNS "“STMT_TEXT" CLOB PATH 'stmt_text',
"ROWS_RETURNED" BIGINT PATH 'activity_metrics/rows_returned',
"STMT_EXEC_TIME" BIGINT PATH 'activity_metrics/stmt_exec_time'
) AS DETMETRICS
ORDER BY rows_returned DESC
FETCH FIRST 10 ROWS ONLY

The following is an example of output from this query.

STMT _TEXT ROWS_RETURNED STMT_EXEC_TIME

SELECT CREATOR, NAME, CTIME FROM SYSIBM.
SELECT SUBSTR(DETMETRICS.STMT_TEXT, 1, 4
SELECT SUBSTR(DETMETRICS.STMT_TEXT, 1, 4
SELECT COLNAME, TYPENAME FROM SYSCAT.CO
SELECT SUBSTR(DETMETRICS.STMT_TEXT, 1, 4
SELECT TRIGNAME FROM SYSCAT.TRIGGERS WH
SELECT COUNT (*x) FROM SYSCAT.TABLESPACES

SELECT POLICY FROM SYSTOOLS.POLICY WHERE
CALL SYSPROC.POLICY_INSTALL ('I',"'DB2Tab
CALL SYSPROC.POLICY_INSTALL ('I', 'DB2Tab

10 record(s) selected.




DB2 LUW

The second example shows, for dynamic SQL statements that have waited on a lock while executing, the number of executions, number of
lock waits and average time spent per lock wait. The output shows values accumulated over the lifetime of the package cache entries, but
restricts information to statements that have executed within the last minute (by setting the modified_within argument tag to 1). The query
excludes the statement details (stmt_text and comp_env_desc data) because they are not required and they are computationally
expensive to report (by setting the stmt_details argument tag to false).

SELECT NUM_EXEC_WITH_METRICS, LOCK_WAITS,
(LOCK_WAIT_TIME / LOCK_WAITS) AVG_LOCK_WAIT_TIME
FROM TABLE (MON_GET_PKG_CACHE_STMT_DETAILS('D', CAST(NULL
AS VARCHAR(32) FOR BIT DATA),
CLOB (
‘<modified_within>1</modified_within><stmt_details>false</stmt_details>"')
o =)
AS STMT_METRICS,
XMLTABLE (XMLNAMESPACES( DEFAULT 'http://www.ibm.com/xmlns/prod/db2/mon'),
'$DETMETRICS/db2_pkg_cache_stmt_details' PASSING
XMLPARSE (DOCUMENT STMT_METRICS.DETAILS) as "DETMETRICS"
COLUMNS "NUM_EXEC_WITH_METRICS" BIGINT PATH 'num_exec_with_metrics',
"LOCK_WAITS" BIGINT PATH 'lock_waits',
"LOCK_WAIT_TIME" BIGINT PATH 'activity_metrics/lock_wait_time'
) AS DETMETRICS
WHERE LOCK_WAITS <> 0
ORDER BY AVG_LOCK_WAIT_TIME DESC

The following is an example of output from this query.

NUM_EXEC_WITH_METRICS LOCK_WAITS AVG_LOCK_WAIT_TIME




THANK YOU

o

il
il

|
|||m!||||||

DB2 LUW



