
Session code:

Adaptive Workload Management
Overview and Best Practices

David Kalmuk
IBM

6048

Platform: Db2 for LUW

1

Agenda

• Background – Concurrency and Workload Management
• Adaptive Workload Management Technology
• Prioritization using Adaptive Workload Management
• Monitoring + Tuning the Adaptive Workload Manager
• Closing Thoughts

Concurrency and Workload
Management

3

Modern data warehousing
systems are expected to
handle a wide variety of
workloads while remaining
responsive

4

Supporting high
concurrency is a key
user demand
making effective
workload
management critical
in these types of
systems

Workload
composition is
typically highly
variable and will
include a mix of
point queries,
interactive
reporting, heavy
analytics,
continuous data
ingest

5

The Goals for Workload
Management in a Database
System

Ensure System Stability and Responsiveness

Don’t overcommit the system but ensure it’s well utilized

Schedule jobs to ensure fairness and appropriate responsiveness

Workload Prioritization / Isolation

Allow resources to be subdivided between workloads for
prioritization / isolation purposes

Workload Governance and Monitoring

Define rules to govern workloads / detect and abort rogue jobs

Perform workload level monitoring

Db2’s “Traditional” Workload Manager

A mature and highly customizable set of capabilities for workload
management
– Classification, mapping, concurrency control, governance thresholds, resource control

View it as a framework with a comprehensive set of ‘tools’ for DIY workload
management
– Construct nearly any workload management setup you can imagine

WLM Best Practices provide a template for building a recommended
configurations for managing a warehouse environment
– Further refinements add scenarios for isolation, prioritization, production shifts

The Db2 Workload Manager Menu

Domain Options
Workload Classification WORKLOAD

Workload Prioritization SERVICE CLASS

Job Classification WORK CLASS / WORK ACTION SET
Remapping THRESHOLD

Job Prioritization SERVICE SUBCLASS

Admission + Resource
Control

Concurrency THRESHOLD
CPU LIMIT + SHARE
PREFETCH + BUFFERPOOL PRIORITY

Governance Predictive + Reactive THRESHOLD

Monitoring SQL Functions (Workload, Service class)
Event Monitors (Statistics, Activity)

The Workload Management
Configuration Lifecycle

8

Classify
Jobs

Apply
Controls

Monitor

Adjust

Classify
Workloads

Create
Workloads Create Work Class / Action

Sets
Create Service Subclasses
Create Remapping
Thresholds

Create Concurrency
Thresholds
Assign CPU Shares + Limits
Create Reactive Thresholds

Best Practice
Template

Adjust Work Class Set Timeron
Ranges
Adjust Concurrency Thresholds
Adjust Remapping Thresholds
Adjust Reactive Thresholds

Iterative
Tuning +
Maintenance

Workload Variation

Workload Changes

Query Costs and Concurrency Limits

9

• Most database vendors use similar
techniques with similar complexities - why?
• Eg. “Concurrency thresholds”,

“Throttles”, “Slots”, ”Queues”,
“Memory limits”, etc.

• The reason is that predicting response times
and resource consumption accurately
enough to be actionable is hard!

• Fixed limits are much easier to implement
from a technology perspective.

• Maintaining this type of WLM configuration
involves manual processes that can be fairly
labor intensive

• The underlying reason is that both query cost
ranges and concurrency limits are lower level
and indirect controls over what we are
actually trying to manage
• Query cost = Use estimate of query

complexity to differentiate based on
response time

• Concurrency limit = Control
resource consumption for jobs in a
particular class via fixed limit

The Challenge of Modern Analytic Workloads

10

• With in-memory column store
technologies fixed resources like
memory become the limiting factor vs.
CPU

• Much less forgiving if system gets
overcommitted; failure not slowdown

• For these types of workloads
configurations based on fixed limits are
necessarily sub-optimal and difficult to
tune

• Diverse range of jobs from miniscule
point lookups to massive analytic
queries

• Highly dynamic workloads combining
high volumes of operational point
queries and concurrent complex
analytics of varying shapes and sizes

The challenge with query costs and concurrency limits…

Default
Workload

Service Super Class

Default Subclass

Medium DML

Complex DML

Query
Cost?

Concurrency Limit = ??0 < Timeron Cost <= ??

For response time
< 30 seconds
target 30%
resources

Concurrency Limit = ???? < Timeron Cost <= ??

?? < Timeron Cost <= ??

For response time
< 600 seconds
target 30%
resources

For response time
> 600 seconds
target 40%
resourcesIndirect controls; onus

is on the user to derive,
apply, and adjust to
maintain appropriate
fixed limits.

Concurrency Limit = ??

Adaptive Workload
Management Technology

13

• Adjusts concurrency implicitly based on workload without manual tuning
• Intelligent job scheduling makes more efficient use of system resources
• Resources considered
• Query sort memory requirements (working memory)
• Number of parallel agents required for processing

• Available on Db2 Warehouse on Cloud, Db2 Warehouse, IIAS, and Db2 11.5.4
• Currently limited to DB2_WORKLOAD=ANALYTICS configurations

Db2’s Adaptive Workload Management Technology

Admission management based on query resource requirements instead of fixed limits!

Adaptive Workload Management Goals

• Deliver true automatic workload management out of
the box with zero tuning

• Removes need to configure + tune fixed concurrency
limits

• Improved stability and performance

• Enables much simpler and more powerful admission
models

Intelligent Job Scheduling
User Requests

Cost
Low

High

Optimizer
Timeron
Estimate

Scheduling based on static
concurrency limit (in High lane

only)

CostCost

Lo
w

High

“Soft” resources can be assigned to each “lane”
Scheduling based on actual memory and cpu availability in each

“Lane”

Traditional WLM
• Cost evaluation includes only “timeron”

estimate
• Open ended (no feedback)
• Scheduling based on static concurrency

threshold

Adaptive WLM
• Cost evaluation includes memory & cpu

load & time duration
• Incorporates historical feedback based on

past executions
• Scheduling based on dynamic view of

resource availability in each “lane”
• Expected benefits

- Improved robustness under high load
- Improved SLA achievement
- Improved overall resource efficiency &

throughput

Prioritization using Adaptive
Workload Management

17

18

Think 2019 / DOC ID / Month XX, 2019 / © 2019 IBM Corporation

Substantially Simplified
Workload Management Create a service superclass pre-configured for one of

three defined workload types
• INTERACTIVE for response sensitive jobs

• BATCH for longer running jobs

• MIXED for workloads that run a combination of both

Assign a resource share to the service class
• Specifies the proportion of database resources this service class is entitled

to

• Shares can be either HARD or SOFT for more flexible vs strict resource
assignment

The system does the rest!

• Implementing the steps:

19

An Example:

• Divide the database resources into 3 distinct
workloads
• High priority interactive reports that require a fast response
• ETL jobs that require sufficient resources to complete within

an assigned window of time
• Other general purpose tasks that don’t fit into the above

categories

create service class HIPRI soft resource shares 300 for workload type INTERACTIVE
create service class ETL soft resource shares 300 for workload type BATCH
create service class GENERAL soft resource shares 600 for workload type MIXED

create workload REPORTS session_user(‘EDW_REPORTS’) service class HIPRI
create workload ETLJOBS session_user(‘EDW_ETL_USER’) service class ETL
alter workload SYSDEFAULTUSERWORKLOAD service class GENERAL

Step 1:

Create service classes

• Define the workload type

• Assign resource shares

Step 2:

Create workloads

• Define session mapping
attributes

• Assign to service class

Workload A

Workload B

Workload C

Default workload

Workload D 2000 (Soft)
Work
Action
Set 3000 (Hard)

1000 (Soft)

User Requests

4000 (Hard)

2000 (Hard)

Service Superclasses

2000 (Soft)
Work
Action
Set 3000 (Hard)

1000 (Soft)

4000 (Hard)

2000 (Hard)

Application A

Application B

Application A

Application B

Reactive
thresholds abort
runaway queries

7000 (Hard)

3000 (Hard) Concurrency Limit = w

Concurrency Limit = x

Concurrency Limit = z

Concurrency Limit = y

Concurrency Limit = w’

Concurrency Limit = x’

Concurrency Limit = z’

Concurrency Limit = y’

Subclass concurrency
limits control mix of
work and overall
superclass admission

CPU shares control
division of CPU
between
superclasses and
subclasses Subclass concurrency

limits control mix of
work and overall
superclass admission

Prioritization with Traditional WLM

Prioritization with Adaptive WLM

Workload A

Workload B

Workload C

Default workload

Workload D

User Requests

Service
Superclasses

Application A

Application B

Application A

Application B

Resource share controls admission and
division of runtime resources

300 Soft Resource Shares

700 Hard Resource
Shares

create service class sc1
soft resource shares 300

create service class sc2
hard resource shares 700

Intelligent resource
based job scheduling and
runtime CPU control
ensures fairness +
responsiveness and
automatically adapts to
any workload

Simplified
reactive
thresholds abort
runaway queries

User Model Details – Service Class DDL Reference

CREATE/ALTER SERVICE CLASS DDL Clause Usage

FOR WORKLOAD TYPE <INTERACTIVE | BATCH | MIXED> Used to pre-configure a service class for a particular query
workload.

SOFT RESOURCE SHARES <share> Used to compute a soft resource entitlement. The soft
entitlement is the maximum resources allowed when
resources are under contention. A soft entitlement may be
exceeded when there is spare resource capacity.

HARD RESOURCE SHARES <share> Used to compute a hard resource entitlement. The hard
entitlement is the maximum amount of resources allowed.

MINIMUM RESOURCE SHARE <value> PERCENT Used to indicate a percentage of the entitled resources that
are held in reserve for the service class (i.e. minimum
resource allocation).

Example:
• Abort any activity that demands > 25% of the total SHEAPTHRES_SHR

• Abort any activity that demands > 25% of the total SHEAPTHRES_SHR and blocks other work for > 5 mins

23

More Goodies - Db2 Thresholds

• New SORTSHRHEAPUTIL threshold allows you to protect your system from rogue queries
with high sort memory demands that might otherwise bottleneck your system.

CREATE THRESHOLD LARGEACTIVITY FOR DATABASE
WHEN SORTSHRHEAPUTIL > 25 STOP EXECUTION;

CREATE THRESHOLD LARGEACTIVITY FOR DATABASE
WHEN SORTSHRHEAPUTIL > 25 AND BLOCKING ADMISSION FOR MORE THAN 5 MINUTES
STOP EXECUTION;

Example:
• Set the session priority to high for a key workload:

• Set the session priority to low for a specific application:

24

More Goodies - Session Priority

• Set a session priority (HIGH, MEDIUM, LOW, CRITICAL) which affects how jobs submitted
by that session are prioritized for execution within a service superclass

ALTER WORKLOAD CRITICAL_REPORTS PRIORITY HIGH;

CALL SYSPROC.WLM_SET_SESSION_PRIORITY(2361, ‘LOW’);

Short Query Bypass

§ Queuing very short queries can have a detrimental impact on performance.
§ To avoid adverse impacts, queries with an estimated runtime of under 1 second or an estimate cost < 25000

timerons will bypass admission control with 2 exceptions:
§ Short queries with non-trivial sort memory usage (estimated usage of more than 2% of the configured SHEAPTHRES_SHR) will still

go through admission control.
§ Query bypass will be temporarily disabled for any query consuming sort memory when overall database sort memory consumption

approaches 100%.

§ Note that any queries submitted by a connection associated with the default administration workload
(SYSDEFAULTADMWORKLOAD) will unconditionally bypass adaptive workload manager admission control.
§ Can be set from the command line using

Can be set programmatically using the WLM_SET_CLIENT_INFO stored procedure

§ The adm_bypassed monitor element in the MON_GET_ACTIVITY interface can be used to identify those queries
that bypassed adaptive workload manager admission control.

db2 “set workload to SYSDEFAULTADMWORKLOAD”

Other Nuts and Bolts

• The Adaptive Workload Manager simplifies and abstracts lower level constructs but
coexists seamlessly with Db2’s existing WLM framework

• Subclasses + work-class sets + work action sets are still the underlying mechanisms
used for controlling finer grained job scheduling and resource management

• How the Adaptive Workload Manager fits into the Db2 WLM framework
• Service superclasses + subclasses

• Resource share attribute for admission + runtime control
• Superclass workload type preconfigures subclasses + work class / work action sets

• Work class / work action sets
• New mapping type based on query RUNTIME

• Thresholds
• Simplified syntax + new SORTSHRHEAPUTIL threshold

• Session priority concept
• New attribute on connections / workloads

Monitoring the Adaptive
Workload Manager

27

Resources that Impact Admission Control

§ The adaptive workload manager considers two resources when admitting work into the database;
shared sort memory and agents (threads)

§ Incoming queries will queue if the resources they require are unavailable. The most limited
resource at any point in time will dictate the observed concurrency.

§ Sort memory is used by different plan operators in a query (e.g. SORT, GRPBY, HSJN, etc) as well as
for column vector working memory.
§ The amount of sort memory used by a query is determined by the number of concurrent sort consuming operators (e.g. SORT,

HSJN, etc), the number of tuples processed and the per-operator sort memory limit as defined by the database sortheap
configuration parameter.

§ The total configured sort memory for the database is determined by the sheapthres_shr database configuration parameter.
§ The current sort memory used by a query can be monitored by looking at the sort_shrheap_allocated monitor element in the

MON_GET_ACTIVITY interface
§ The estimated and actual peak sort memory usage for a query can be monitored by looking at the estimated_sort_shrheap_top

and sort_shrheap_top monitor elements respectively in the MON_GET_ACTIVITY interface.
§ Adaptive WLM will only admit work up to 95% of the configured sort memory; some memory is held in reserve for queries that

bypass WLM.

Resources that Impact Admission Control (cont’d)

§ Agents are threads that perform work on behalf of queries.
§ The agent requirements for a query are determined by the query degree. The default query degree is controlled by the

dft_degree database configuration parameter.
§ The estimated number of agents required to execute a query can be examined by looking at the effective_query_degree

monitor element in the MON_GET_ACTIVITY interface.
§ The total number of agents that the adaptive workload manager will admit into the database is determined by the

wlm_agent_load_trgt database configuration parameter, which specifies the number of agents per CPU core and the number of
physical CPU cores. I.e. max agents admitted = wlm_agent_load_trgt x physical CPU cores.

§ By default, dft_degree is set to ANY; with degree ANY queries will run with a degree equal to the number of physical cores.
Under this configuration, the wlm_agent_load_trgt can be considered as similar to a concurrency limit (e.g. a load target of 10
would admit approximately 10 queries at a time).

Adaptive WLM configuration

§ Out-of-the-box configuration is designed to be largely autonomous + adaptive with no tuning
requirements

§ One optional tunable that you should be aware of is the WLM_AGENT_LOAD_TRGT database
configuration parameter

§ This parameter controls the maximum thread load per core that the workload manager will allow
into the system at a time to avoid degrading processing efficiency.

§ The thread load per core on the database is computed as the sum of the DEGREE of all the queries
executing on the system.

§ Example:
§ Running 6 queries with DEGREE=12 on a 12-core system results in a thread load per core of 6
§ Running 24 queries with DEGREE=1 on a 12-core system results in a thread load per core of 2

Adjusting WLM_AGENT_LOAD_TRGT

§ The default WLM_AGENT_LOAD_TRGT is computed based on the system hardware and
should be optimal for most scenarios

§ Consider increasing the WLM_AGENT_LOAD_TRGT if:
§ The workload manager is queueing jobs AND
§ There is sufficient sort memory to accommodate more jobs AND
§ None of the system resources are saturated (CPU, I/O, network)

§ Consider decreasing the WLM_AGENT_LOAD_TRGT if:
§ The system is running a concurrent workload AND
§ The CPU run queues on the system are very heavily loaded and it’s degrading system throughput

§ Example:
UPDATE DB CFG FOR MYDB USING WLM_AGENT_LOAD_TRGT 24

Adjusting SORTHEAP and SHEAPTHRES_SHR

§ Since Adaptive WLM manages admission based on query resource demands altering the
working memory configuration will have a direct impact on job scheduling behavior

§ Increasing SORTHEAP relative to SHEAPTHRES_SHR
§ Allows more memory per operator (and by extension query) reducing execution time, but fewer

jobs will be able to run simultaneously
§ Decreasing SORTHEAP relative to SHEAPTHRES_SHR
§ Allows less memory per operator (and by extension query) increasing execution time, but more

jobs will be able to run simultaneously
§ Increasing SHEAPTHRES_SHR by trading off BUFFERPOOL memory
§ This strategy can allow increased concurrency without otherwise sacrificing individual query

performance
§ Useful in cases where significant large queries result in concurrency bottlenecks

Monitoring Admission Control Queuing Behavior

§ Queuing occurs when the resource demands of the current workload exceed the configured
resource capacity of the database server causing incoming work to wait until there is capacity for it
to execute

§ Queuing is expected and should not be viewed as problematic on its own. However, badly behaving
applications or queries can cause unexpected queuing resulting in observable delays from a client.
§ For example, consider a query that consumes close to 100% of the resources on the database and blocks other

incoming work.

§ Monitor elements exposed through SQL functions can be used to understand queuing behaviour on
the database as well as to identify the top resource consuming statements.
§ Using this information you can identify the statements responsible for queuing and terminate them if

appropriate. For example, if a query that uses 95% of the memory was submitted in error, the application that
submitted this query can be terminated by using the FORCE APPLICATION command.

Monitoring Admission Control Queuing Behavior

§ MON_GET_DATABASE function
§ Provides a summary of overall memory usage and query execution for the

database.
§ Elements are reported for each database member. Key monitor elements include:
§ ACT_COMPLETED_TOTAL – total number of statements completed
§ WLM_QUEUE_ASSIGNMENTS_TOTAL – total number of statements that have

been queued by WLM admission control
§ WLM_QUEUE_TIME_TOTAL – total amount of queue time incurred by all

statements that were queued
§ SORT_SHRHEAP_ALLOCATED – current amount of shared sort memory in use
§ SORT_SHRHEAP_TOP – peak amount of shared sort memory in used

Monitoring Admission Control Queuing Behavior

§ MON_GET_ACTIVITY function
§ Provides information about each query currently executing or queued in the database. Elements are reported for each

database member. Key monitor elements include:
§ APPLICATION_HANDLE – Application that submitted the query
§ SESSION_AUTH_ID – Authorization ID of user that submitted the query
§ SORT_SHRHEAP_ALLOCATED – Current amount of shared sort memory in use by the query
§ SORT_SHRHEAP_TOP – Peak amount of shared sort memory in used by the query
§ ESTIMATED_SORT_SHRHEAP_TOP – Estimated peak sort memory usage for the query
§ EFFECTIVE_QUERY_DEGREE – Query degree; counted against agent load target
§ QUERY_COST_ESTIMATED – Estimated cost (e.g. can use this to help understand bypass behavior)
§ ADM_RESOURCE_ACTUALS – Not available until next refresh; indicates whether or not the memory

estimate is based on past observed memory consumption
§ ACTIVITY_STATE – State of the query; indicates if the query is currently executing, queued or idle

(executing, but blocked on a client). Queries in both executing and idle states hold resources
§ ADM_BYPASSED – Indicates whether or not the query bypassed admission control
§ STMT_TEXT – Query statement text

§ Also see MON_GET_PKG_CACHE_STMT for a historical view of statement behavior

Monitoring Resource Entitlements and Usage

§ The statistics event monitor and statistics table functions (e.g.
MON_GET_SERVICE_SUPERCLASS_STATS) surface various monitor elements that can be used view
resource usage over time. Key monitor elements include:
§ RESOURCE_ENTITLEMENT – Percentage of resources that a service class is entitled to based on the configured

resource shares for the service class.
§ AGENT_LOAD_TRGT_UTILIZATION_AVG – Average utilization of threading resources by work running in the

service class, expressed as a percentage of the total threading resources (wlm_agent_load_trgt x number of
physical cores)

§ AGENT_LOAD_TRGT_UTILIZATION_TOP – Peak utilization of threading resources by work running in the service
class, expressed as a percentage of the total threading resources (wlm_agent_load_trgt x number of physical
cores)

§ SORT_SHRHEAP_UTILIZATION_AVG – Average utilization of shared sort memory by work running in the service
class, expressed as a percentage of the configured shared sort memory (sheapthres_shr)

§ SORT_SHRHEAP_UTILIZATION_TOP – Peak utilization of shared sort memory by work running in a service class,
expressed as a percentage of the configured share sort memory (sheapthres_shr)

Example Monitoring Query #1

§ Identify the most constrained resource (agents vs sort)
WITH LOADTRGT(LOADTRGT) AS (SELECT MAX(VALUE) FROM SYSIBMADM.DBCFG WHERE NAME =
'wlm_agent_load_trgt'),

SORTMEM (SHEAPTHRESSHR, SHEAPMEMBER) AS (SELECT VALUE, MEMBER FROM SYSIBMADM.DBCFG
WHERE NAME = 'sheapthres_shr'),

STMTS(NUMSTMT) AS (SELECT COUNT(*) FROM TABLE(MON_GET_ACTIVITY(NULL,-2)) AS T WHERE
ADM_BYPASSED = 0 AND (ACTIVITY_STATE = 'EXECUTING' OR ACTIVITY_STATE = 'IDLE') AND
MEMBER=COORD_PARTITION_NUM),

ALLOCMEM(ALLOCMEM, ALLOCMEMBER) AS (SELECT SORT_SHRHEAP_ALLOCATED,MEMBER FROM
TABLE(MON_GET_DATABASE(-2)) AS T)
SELECT MAX(DEC((FLOAT(ALLOCMEM)/FLOAT(SHEAPTHRESSHR))*100, 5,2)) AS PERCENT_SORTMEM_USED,

MAX(DEC((FLOAT(NUMSTMT)/FLOAT(LOADTRGT))*100,5,2)) AS PERCENT_THREADS_USED
FROM LOADTRGT, SORTMEM, STMTS, ALLOCMEM
WHERE SHEAPMEMBER=ALLOCMEMBER

PERCENT_SORTMEM_USED PERCENT_THREADS_USED
-------------------- --------------------

76.99 11.76

Most constrained resource
is sort memory

Example Monitoring Query #2:

• Currently executing and queued statements with details

45

with sortmem (sheapthresshr, member) as
(select value, member from sysibmadm.dbcfg where name = 'sheapthres_shr')
select b.application_name, b.session_auth_id, a.entry_time, a.local_start_time,

a.activity_state, a.query_cost_estimate, a.estimated_runtime,
a.effective_query_degree, a.adm_bypassed,
(a.estimated_sort_shrheap_top * 100) / c.sheapthresshr as mem_estimate_pct,
(a.sort_shrheap_top * 100) / c.sheapthresshr as peak_mem_used_pct,
substr(a.stmt_text, 1, 512) as stmt_text

from table(mon_get_activity(null,-2)) as a,
table(mon_get_connection(null,-1)) as b,
sortmem as c

where (a.application_handle = b.application_handle)
order by activity_state;

Monitoring Query #2 (cont’d)

46

… ACTIVITY_STATE QUERY_COST_ESTIMATE ESTIMATED_RUNTIME EFFECTIVE_QUERY_DEGREE ADM_BYPASSED MEM_ESTIMATE_PCT PEAK_MEM_USED_PCT …
-------------- ------------------- ----------------- ---------------------- ------------ ---------------- -----------------
EXECUTING 58 36733 24 1 5.14355 4.95233
EXECUTING 58342 267330 24 0 3.14355 4.12342
EXECUTING 58423442 136733 24 0 11.14355 8.95233
EXECUTING 182235523 5367333 24 0 7.14355 9.95233
QUEUED 679342340083 104336733 24 0 75.14355 0.00

Queued job waiting
for admission

Memory estimates
used for admission

Peak memory usage
Very short query
admission bypass

Monitoring Resource Entitlement Compliance Example

§ Monitor service class
resource demand over
time relative to
entitlement and also
display the most heavily
contended resource

SELECT STATISTICS_TIMESTAMP,
SUBSTR(SERVICE_SUPERCLASS_NAME, 1, 20) as SUPERCLASS,
DECIMAL(MAX(RESOURCE_ENTITLEMENT), 5, 2) ENTITLEMENT,
DECIMAL(MAX(RESOURCE_ENTITLEMENT * (MINRESOURCESHAREPCT) / 100), 5, 2) AS

MINIMUM_ENTITLEMENT,
CASE WHEN MAX(AGENT_LOAD_TRGT_DEMAND_AVG) > MAX(SORT_SHRHEAP_DEMAND_AVG) THEN

'THREADS'
ELSE

'SORT MEMORY'
END AS CONSTRAINED_RES,
DECIMAL(MAX(CASE WHEN AGENT_LOAD_TRGT_DEMAND_AVG > SORT_SHRHEAP_DEMAND_AVG THEN

AGENT_LOAD_TRGT_DEMAND_AVG
ELSE
SORT_SHRHEAP_DEMAND_AVG
END), 5, 2) AS CONSTRAINED_RES_PCT,

DECIMAL(MAX(AGENT_LOAD_TRGT_DEMAND_AVG), 5, 2) as AGENT_LOAD_DEMAND_AVG,
DECIMAL(MAX(SORT_SHRHEAP_DEMAND_AVG), 5, 2) AS SORT_SHRHEAP_DEMAND_AVG,
DECIMAL(MAX(ADM_QUEUED_ACT_LOAD), 5, 2) AS QUEUED_LOAD

FROM SUPERCLASSSTATS_EVMONSTATISTICSU1 A,
SYSCAT.SERVICECLASSES B

WHERE A.SERVICE_CLASS_ID = B.SERVICECLASSID AND
A.SERVICE_SUPERCLASS_NAME IN (‘S1',’S2')

GROUP BY STATISTICS_TIMESTAMP,
SERVICE_SUPERCLASS_NAME,
MINRESOURCESHAREPCT

ORDER BY STATISTICS_TIMESTAMP ASC

Monitoring Resource Entitlement Compliance Example (Cont’d)

STATISTICS_TIMESTAMP SUPERCLASS ENTITLEMENT MINIMUM_ENTITLEMENT CONSTRAINED_RES CONSTRAINED_RES_PCT AGENT_LOAD_DEMAND_AVG
SORT_SHRHEAP_DEMAND_AVG
-------------------------- ---------- ----------- ------------------- --------------- ------------------- --------------------- --------

2019-05-01-14.51.31.681770 S1 24.99 0.00 SORT MEMORY 18.49 10.43
25.49
2019-05-01-14.51.31.681770 S2 74.99 0.00 SORT MEMORY 81.02 58.14
81.02
2019-05-01-14.52.06.424844 S1 24.99 0.00 SORT MEMORY 40.33 17.00
40.33
2019-05-01-14.52.06.424844 S2 74.99 0.00 SORT MEMORY 59.58 49.98
66.58
…
…

The above output shows that sort memory is the most heavily contended resource

Closing Thoughts

59

Summing Up

Innovative new workload management technology in the Db2 Common SQL Engine
that automatically adapts to your workload and vastly simplifies the task of
managing your workloads

Leverages intelligent job
scheduling for improved stability
and performance with zero
tuning

Simplified user model allows
you to easily divide database
resources between different
workloads in order to prioritize
and meet your performance
goals

Technology improvements
will continue to roll out
across the Hybrid Data
Management Platform
offerings

What’s Next for Adaptive WLM?

• Extending Adaptive WLM to all Db2 configurations
• Drop DB2_WORKLOAD=ANALYTICS restriction

• Full support for CPU control
• Add support for integrated CPU shares (current restriction)

• Further incremental efficiency improvements
• Job scheduling improvements based on field experiences

• Console support
• Manage Adaptive WLM through the console

Thank You!

62

Questions?

Session code:

Please fill out your session evaluation
before leaving!

6048

David Kalmuk
IBM
dckalmuk@ca.ibm.com

63

