
DevOps for DB2 DBAs

Julian Stuhler
Triton Consulting

DB2Night Show
20th March 2020



2

Agenda

• Introduction

• DevOps – A Definition

• DevOps – Why Should I Care?

• DevOps for Data

• Case Study – Automating DB2 
Schema Change Deployment

• Summary



3

Introduction

• DB2 consultant with Triton 
Consulting, based in the UK

• 33 years DB2 experience
• Database Administration
• Systems Programming
• Application Development
• DevOps

• IBM Gold Consultant

• IBM Champion

• IBM White Papers, Redbooks, Flashbooks, etc

• IDUG Best Speaker and Past President



4

DevOps – A Definition 

• A software engineering culture and practice that aims at unifying software 
development (Dev) and software operation (Ops)

• Strongly advocates automation and monitoring at all steps of software 
construction, from integration, testing, releasing to deployment and infrastructure 
management

• DevOps promises shorter development cycles, increased deployment frequency, and 
more dependable releases, in close alignment with business objectives

• Emerged as a concept around 2007, but 
many of the underlying principles have been 
with us for much longer

• Enterprises adopting DevOps practices 
for both distributed and mainframe

• Close relationship with agile and cloud computing



5

DevOps – People, Process, Tools (in that order!) 

People
Significant culture change, removing “the wall”

Needs input / buy-in from Dev & Ops

Engineers not Developers, DBAs, etc

Process
Aligns with Agile methodologies

Emphasis on frequent, small changes (MVP)

Same process to deploy in all environments

Fail fast / shift left

Robust feedback loops – continuous improvement

Tools
Major emphasis on automated testing & deployment

Open source toolchains available for almost everything

Rocket a major enabler on Z



6

DevOps – Toolchains

Image: courtesy of Compuware

• Vast array of proprietary and open-

source tooling available

• High degree of interoperability

• Each environment is different, 

clients often free to mix and match 

what works best for them



7

DevOps –Why Should I Care?

• IBM has embraced  Agile / DevOps principles, and we are already starting to see 
the impact

• Continuous delivery of new function for DB2 for z/OS (from V12 onwards) and DB2 for 
LUW (from V11.1 onwards)

• Combination of continuous delivery and APPLCOMPAT features in DB2 for z/OS will have 
significant potential impact on method and frequency of new function rollout

• Your organisation is probably already adopting DevOps practices for in-house 
development (even if they are not referred to as such)

• DevOps is not new, but adoption by larger enterprises is more recent and continues to build 
momentum



8

DevOps –Why Should I Care?

• DevOps will have a significant impact on traditional DB2 DBA and Sysprog / 
Sysadmin roles

• New development paradigms and tools must be understood

• Self provisioning of new DB2 environments and schemas

• Automated delivery of schema change

• Automated QA checking for DDL, SQL, stored procedures, etc

• Remove organisational / cultural barriers between traditional dev, DBA, sysprog roles

• Potential to reduce amount of routine donkey work and free up time for higher-value work 
such as database design, performance tuning, etc

• DevOps encourages engineer empowerment, and culture is typically to first 
challenge and then route around any “blockers”

• Traditional support / operations roles must evolve or die



9

DevOps for Data

• DevOps as a movement has existed for several years, but is now being taken in new 
directions

• Enterprise Focus

• Many “Digital Native” companies such as Google, Facebook and Amazon have successfully used DevOps for 
many years, but usage has now spread to more traditional enterprises (e.g. banks, building societies)

• Expansion to include automation of database activities as well as code

• Test data management

• Reference data management

• Quality assurance / static analysis for DDL and DML

• Schema deployment to new environments

• Automated Schema Change Deployment (ASCD) to existing environments

• Combination of these factors has lead to significantly increased interest in “DevOps for Data”



10

ASCD – Considerations

Tooling
Correct tooling will be critical in 

determining how robust the 

automation can be.

Approach
Early decision needed on overall 

approach (Compare v Delta).

Industry Maturity
DevOps not new, but many 

sites have not yet tackled 

database automation.

2

3

1

Control
Self-service is the ultimate goal, 

but essential to keep a DBA 

approval step in the process

4



11

Master DDL Target DB2 Schema

Compare

Implementation 
Script

Compare Approach Delta Approach

Upgrade Scripts

V1 ➔V2 

V2 ➔ V3

V3 ➔ V4

Vn➔ Vn+1

Target DB2 
Schema

Execute

Apply

ASCD – Approach Options



12

Compare Approach Delta Approach

Pros • Very robust – can take a given environment from any version to 
any version with a single operation

• Guaranteed consistency – as environment always compared with 
“master” DDL, all environments remain consistent. Any “ad-hoc” 
local changes will automatically get removed on next environment 
refresh

• Easy to create new environments – just compare required DDL 
master with blank environment

• Minimal inputs required for deployment once set up – just master 
DDL and name of target environment

• Easy roll-back – just run compare on previous version
• Master DDL can be source-managed in Git

• Open source tooling available such as Liquibase
• Probably closer to existing deployment processes so may be easier 

to implement 
• As a result of the above, more general understanding/experience in 

the industry 
• Scripts can be source-managed in Git
• Same script used in all environments, can be more predictable

Cons • Needs a robust schema compare tool for DB2, which will probably 
be chargeable. 

• Likely some up-front work required to get agreed baseline of 
existing schema, depending how messy existing 
environment/process is

• Any differences between environments (e.g. ad-hoc changes) will 
remain following upgrade

• Some environment differences may cause delta script to fail as it 
expects DB to be in a given state

• Creating new environments requires many different scripts to be 
run sequentially (or ongoing effort to rollup scripts)

• More thought/manual effort required to get inputs
• Rollback can be painful – need to create manual rollback scripts 

under some circumstances
• Some variants/features still cost money

• Liquibase Pro
• Flyway

ASCD – Approach Trade-Offs



13

ASCD – Compare Granularity

• Flexibility v complexity trade-off for granularity of DDL used for compare

• Database-level gives simpler process and easier tracking, but can cause issues in agile 

environments with multiple sprints proceeding on RTL at different speeds

• Tablespace-level* makes process more complex (may need to glue together several bits of 

DDL for a given deployment), but gives more flexibility in agile / parallel development 

environments

Change 
Manager 

CDL/Worklist
UCD Automated 
compare/deploy

Single DB-Level 
DDL File

DB2 
Catalog

Change 
Manager 

CDL/Worklist

Change Manifest
• TS1 

name/version
• TS2 

name/version
• …
• TSn name/version

UCD Automated 
Compare/ 

Deploy

DDL package
• TS1 DDL
• TS2 DDL
• …
• TSn DDL

DDL Packager

TS-Level DDL 
Files

(One PDS per TS, 
one member per 

version)

DB2 
Catalog

DB-Level Master DDL TS-Level Master DDL

*TS-Level DDL includes all dependent objects (tables, indexes, aux tables/tablespaces, etc)



14

ASCD Case Study - Background



15

ASCD Case Study – Problem Statement



16

ASCD Case Study - Toolchain



17

ASCD Case Study – Key Features

• Developers / engineers have self-

service provisioning / deployment 

capability

• Deployment can be requested via UCD 

GUI, web page, REST call, Jenkins, etc

• Process can be used to create new test 

environments (EaaS) as well as 

upgrade existing ones

• Compare to blank target schema

• Additional steps needed to populate with 

standard test data

• Automated DBA approval emails for non-

Dev environments

• Email includes attachments for execution 

JCL and worklist, and warning if object 

drop / re-create is needed

• Option to request backout capability

• Full CM recovery baseline taken before 

change

• Additional job generated to allow recovery 

back to full baseline

• UCD Templates used to allow multiple 

application teams to easily use the same 

processes



18

ASCD Case Study – Benefits

• Schema changes can be integrated as part 
of a wider application deployment

• Use of master DDL library ensures all 
environment remain in lock-step as 
schema versions are promoted

• Reduction in time/effort required by DBAs 
(and developers) to rollout schema 
changes, leaving more time for higher-
value activities such as tuning and design

• Allows easy tracking of what’s been 
deployed where, and by whom

• Self-service capability for developers and 
engineers

• Reduction in potential for human error

• Schema change backout capability 
minimises elapsed time in the event that 
change has to be regressed

• Single standardised process for all schema 
changes, that can be enhanced with 
additional checks



19

ASCD Case Study – Lessons Learned

• You MUST use a model management tool 
of some kind (Data Studio, erwin, etc)

• Ensure DDL consistency / validity to make 
automation more robust

• Get z/OS sysprogs and IT security on side 
early

• Reassure them that UCD z/OS agent isn’t 
inherently evil

• Agree responsibilities / RACI
• Consider use of non-human IDs, with RACF 

PassTickets and impersonation

• Engage your tool vendor
• All change/compare tools already have batch 

capabilities but some activities can be made 
much easier with relatively minor 
enhancements

• Continuous Delivery encourages a 
different mindset for DB schema change

• Emphasis on avoiding any kind of disruptive 
change due to delivery frequency

• Work within limitations of ALTER (e.g. use of 
“replacement tables”, add columns to end of 
existing table, etc)

• Process automatically generates warnings if 
DROP / CREATE strategy is adopted

• Not all developers / engineers like the 
UCD interface, and freeform entry of 
target environments etc can generate 
errors

• Consider front-ending generic UCD processes 
with customised request portal and / or invoke 
from Jenkins



20

Summary

• If it’s not already prevalent, DevOps is coming to a site near you, and soon

• DevOps brings significant culture and process change, and DBAs are not 

immune 

• Will you embrace the new opportunities to automate the donkey-work and 

concentrate on higher-value activities, or be one of those that are worked 

around?



21

Questions?


