

CO2 – DB2 DPF: What a single partitioned DBA needs to know in 10 points

Welcome to the presentation.

Thank you for taking your time for being here.

In this presentation, my goal is to share with you 10 practical points that a single partitioned DBA needs to know to get head start on administering and managing a DPF database.

Even if you are a seasoned DB2 DPF DBA, my hope is that you would get something out of this presentation. We will have time at the end for questions.

For the DB2Night Show today, the timing is perfect to learn about DPF or MPP because DB2 11.1 has just been released which has support for BLU on MPP. That means columnar technology is now available for DPF databases as well. This is going to be huge one and a game changer for many shops that run DPF because of multi-fold performance gains that BLU can offer and of course we shouldn't forget one of the most major selling points of BLU which is compression.

I am eager to see how BLU plays out in MPP myself.

#IDUGDB2

- DB2 LUW 11.1 released June 2016!
- Supports BLU column organized tables on DPF (MPP)
- Compression !
 - Adaptive compression in DB2 10.5 ~70% gains
 - Imagine what BLU on DPF can do in 11.1!

Let me show you how to become a DPF DBA

Objectives

- Understand high level overview of DPF
- Learn how to run DB2 and OS commands on DPF system
- Create tables in a DPF database -- Best practices
- Backup, Restore, Runstats How are they different in a DPF system
- Understand usage of db2top in DPF
- If you are new to DPF, overall objective is to get you going as a DB2 DPF DBA

P.S.: No BLU on DPF discussion in this presentation

Objectives of the presentation that were included when abstract was submitted to IDUG for consideration.

#IDUGDB2

Agenda

- Speaker Introduction and Background
- Quick Introduction to DB2 DPF
- DB2 DPF -- 10 Points for a single partitioned DBA
- Summary
- Questions

High level Agenda for this presentation.

Agenda could be divided into 2 parts.

In Part 1, DPF will be introduced

In Part 2, we will discuss 10 points that a single partitioned DBA needs to know about DPF.

Pavan Kristipati

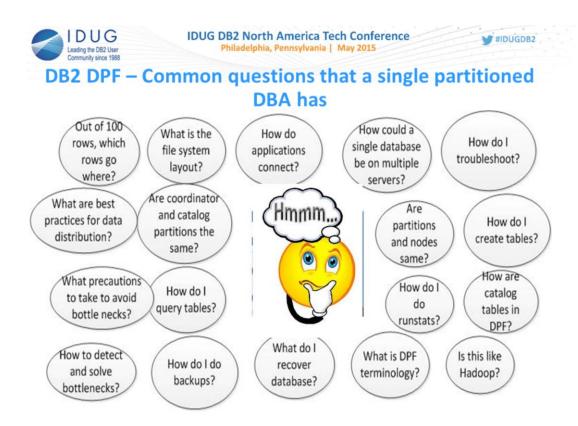
- IBM Champion 2015, 2016
- IDUG North America Conference Planning Committee
- DB2 LUW DBA since 2005
- Presented at IDUG in 2014 and 2015
- IBM Certified Advanced Database Administrator
- Technical blogging
 - <u>www.db2talk.com</u> Owner
 - <u>www.db2commerce.com</u> Occasional guest blogger
- https://www.linkedin.com/in/pavankristipati
- @pkristipati @db2talk 🍯

5

#IDUGDB2

Setting the stage

- Presentation is mostly on DB2 9.7, 10.1 on UNIX (AIX / Linux)
- Assumption DPF is installed; No discussion on installation
- Focus is on T-Shaped skills (breadth vs. depth)
- Best practices from experience gained managing DPF databases (I continue to work as single partitioned DBA ⁽³⁾)
- Performance topics have been left out Out of scope
- Additional reading resource on topics presented -- Pavan Kristipati's blog www.db2talk.com



DB2 DPF - What, Why, Where, How?

- What -- DPF Database Partitioning Feature (MPP = Massively Parallel Processing)
- Why -- Solution for a database that is too large on a single server
- Where -- Mostly Data Warehouse systems, Decision Support Systems
- How Workload spread across multiple systems
- How -- Applications need not be aware of any parallelism; DPF presence is largely transparent to end user
- Shared nothing (a.k.a. dedicated system resources) architecture – Each piece of database has its own data, logs, system resources etc.
- Near-linear scalability

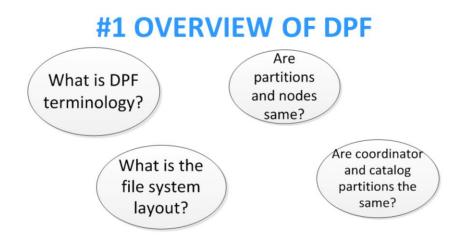
IDUG

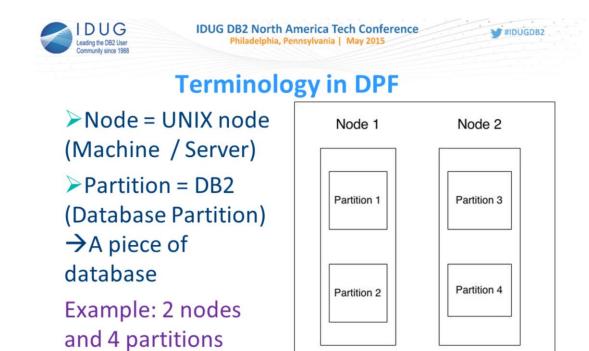
Leading the DB2 User Community since 1988

These are some of the common questions that a single partitioned DBA who is getting ready to work on DPF usually has.

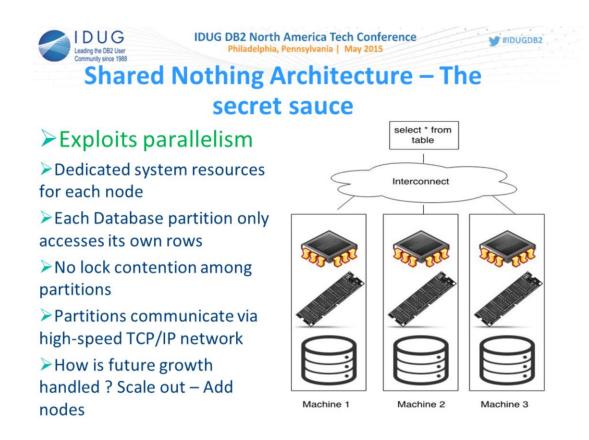
While each of these questions could be a presentation by itself, we aim to address (from a high level) most of these questions in this presentation except for performance related topics.

You should have basic understanding of each of these topics by the end of this presentation.

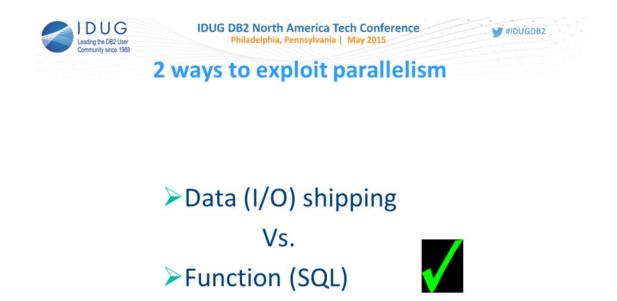


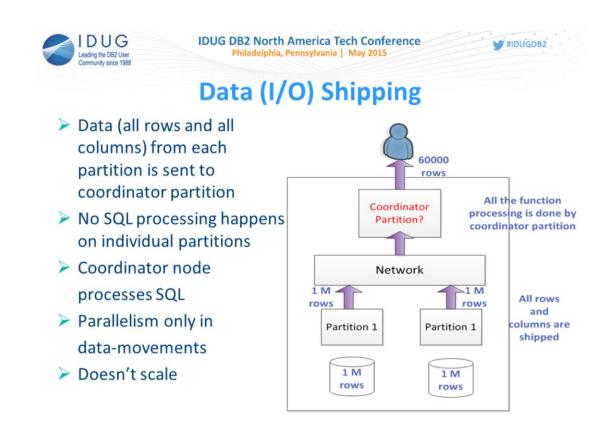

#IDUGDB2

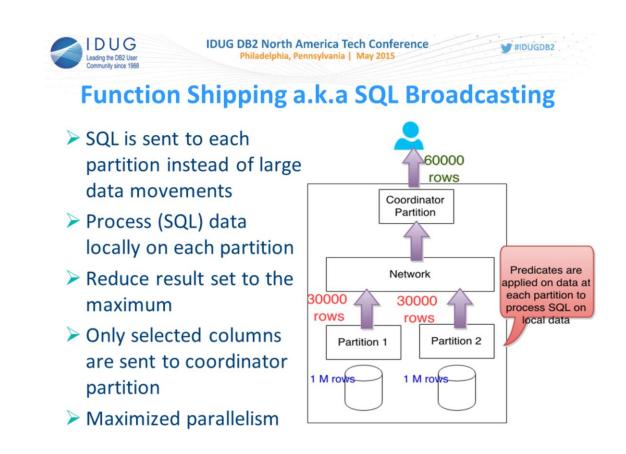
10 POINTS



#IDUGDB2




A node in DPF is a UNIX server/LPAR.A partition in DPF is a piece of database.When there are 2 partitions on a node, those are called logical partitions


Each database partition has its own set of computing resources, including CPU and storage. In a DPF environment, each table row is distributed to a database partition according to the distribution key specified in the CREATE TABLE statement. When a query is processed, the request is divided so each database partition processes the rows that it is responsible for. Essentially, DPF is a scalability feature. DPF can maintain consistent query performance as the table grows by providing the capability to add more processing power in the form of additional database partitions. This capability is referred to as providing linear scalability using DB2's shared nothing architecture.

- DPF relies on both these techniques but majorly uses Function shipping.
- It ships SQL (function) from the coordinator node to database partitions.
- Result data is shipped from data nodes to coordinator node after data processing is done on data nodes.

- All the 1M rows from each database partition are shipped via network to the Coordinator partition which then processes the query.
- If the table has 10 columns, all columns are shipped irrespective of if the SQL really needs all the columns or not.

- The select statement is broadcasted to each of the individual partitions and the predicates are applied to reduce the number of rows.
- The number of columns are also reduced to the number that is required to provide the answer to the application.
- The results are passed to the coordinator partition which is then passed to the end user (application).
- This approach results in reduction of network traffic because the SQL function is shipped to the data instead of data being shipped to the SQL
- If an ORDER BY clause was specified in the SQL, sorts would be done by each partition process and

the coordinator partition would merge the answer set.

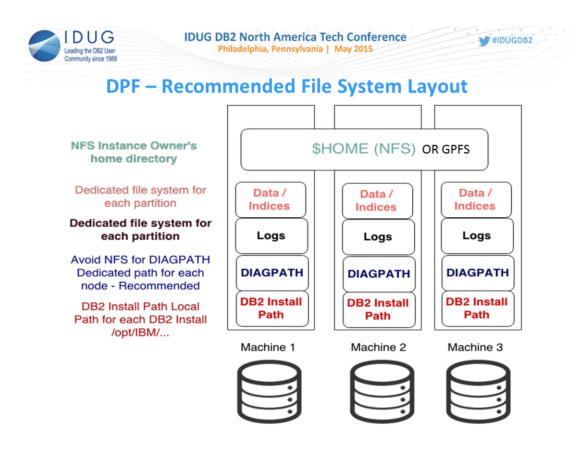
Catalog Partition, Coordinator Partition and SSH

Catalog Partition

Has catalog tables (Create database command was run on this partition)

Coordinator partition

- > The one that the user connected to (could be any partition)
- Puts together result set and presents to the user

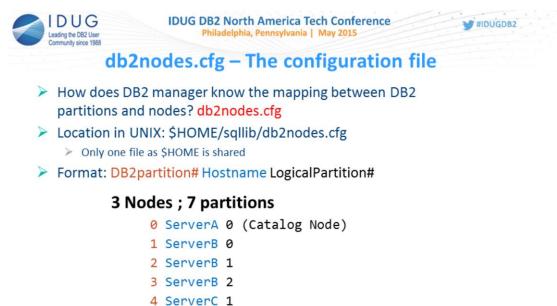


Requirement for DPF -- Password-less 'ssh' between nodes (hosts)

db2inst1@ServerA:~> ssh ServerB Last login: Mon Dec 15 16:35:47 2014 from ServerA

db2inst1@ServerB:~> ssh ServerC Last login: Mon Dec 15 16:36:44 2014 from ServerB

db2inst1@ServerC:~> ssh ServerA Last login: Mon Dec 15 16:37:45 2014 from ServerC



Instance owner's home directory – NFS -- shared across nodes

Local mount points for transaction and archive logs
 DIAGPATH – Diagnostic Path

Avoid NFS or shared mount point
 Best Practice = Local mount point

In a large DPF system, an NFS DIAGPATH could be IO bound – Heavy write activity from multiple hosts at the same time

- 5 ServerC Ø
- 6 ServerC 2

URL for more examples in the notes

Refer to http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_9.1.0/com.ibm. db2.udb.uprun.doc/doc/r0006351.htm for more details on these examples.

DPF Metadata -- Partition Groups and Tablespaces

- Layers of abstraction transparent to end user
- Provide control over mapping b/n tables and partitions
- PARTITION GROUPS Group of partitions (only 1 on non-DPF)
 - CREATE DB PARTITION GROUP pdpg ON DBPARTITIONNUMS (1,2,3,4)
 - CREATE DB PARTITION GROUP **sdpg** ON DBPARTITIONNUMS (0)
 - CREATE DB PARTITION GROUP allpg ON DBPARTITIONNUMS (0,1,2,3,4,5)
- TABLESPACES-db2 "CREATE TABLESPACE tbsp1 IN PARTITION GROUP pdpg..."
 - db2 "LIST DATABASE PARTITION GROUPS"
 - TABLE-db2 "CREATE TABLE TAB1 IN tbsp1....."

Syntax to create a partition group:

http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm .db2.luw.sql.ref.doc/doc/r0000921.html?cp=SSEPGG_10.5.0%2 F2-12-7-62

Syntax to create Tablespace:

http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm .db2.luw.sql.ref.doc/doc/r0000929.html?cp=SSEPGG_10.5.0%2 F2-12-7-102

#2: RUNNING COMMANDS IN DPF

How do I interact with nodes and partitions? How is it different from running commands on single partitioned DB2 database?

#IDUGDB2

Two options db2_all vs. rah

db2_all (Run on all	Rah (Run on All		
db2 partitions)	Hosts)		
Runs command on each database	Runs command on each node (host)		
partition	each node (nost)		
Prefix 'db2_all' command to db2 command	Prefix 'rah' to OS command		

db2_all - returns output from each db partition

1 catalog node + 2 hosts with 2 partitions on each = total 5 partitions					
<pre>\$db2_all "db2 get db cfg for edwdv grep</pre>	LOGARCHMETH1"				
First log archive method	(LOGARCHMETH1) = TSM				
dvadm01: db2 get db cfg for completed	ok				
First log archive method	(LOGARCHMETH1) = TSM				
dvdata01: db2 get db cfg for completed	d ok				
First log archive method	(LOGARCHMETH1) = TSM				
_dvdata01: db2 get db cfg for completed	d ok				
First log archive method	(LOGARCHMETH1) = TSM				
dvdata02: db2 get db cfg for completed	d ok				
First log archive method	(LOGARCHMETH1) = TSM				
dvdata02: db2 get db cfg for completed	d ok				

Rah (Run on All Hosts) – returns output from each UNIX host (node)

Create a file alert.log on each Server in DPF cluster

\$rah `touch /tmp/alert.log'

IDUG

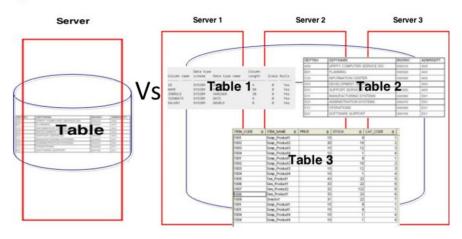
Leading the DB2 User Community since 1988

			/tmp/alert.log				
4 Nodes/Hosts	dvdata01:	touch	/tmp/alert.log	completed	ok		
	dvdata02:	touch	/tmp/alert.log	completed	ok	4 lines of	
	dvdata03:	touch	/tmp/alert.log	completed	ok	output	
							-

\$rah('ls -ltr /tmp/alert.log')

-rw-r--r- 1 db2inst1 bcuigrp 0 2015-01-14 16:30 /tmp/alert.log dvadm01: ls -ltr /tmp/alert.log completed ok -rw-r--r-- 1 db2inst1 bcuigrp 0 2015-01-14 16:30 /tmp/alert.log dvdata01: ls -ltr /tmp/alert.log completed ok -rw-r--r-- 1 db2inst1 bcuigrp 0 2015-01-14 16:30 /tmp/alert.log dvdata02: ls -ltr /tmp/alert.log completed ok -rw-r--r-- 1 db2inst1 bcuigrp 0 2015-01-14 16:30 /tmp/alert.log dvdata03: ls -ltr /tmp/alert.log completed ok

IDUG DB2 North America Tech Conference Philadelphia, Pennsylvania May 2015 Check for db2sysc processes in DPF using 'rah'	DUGDB2
<pre>\$rah "ps -ef grep -i db2sysc grep -vi gre db2inst1 13799 13784 62 2014 ? 94-18:43:01 db2sysc 0 dvadm01: ps -ef grep -i db2sysc completed ok</pre>	p"
db2inst1 12159 12154 19 2014 ? 29-22:36:17 db2sysc 1 db2inst1 12165 12156 15 2014 ? 23-05:56:11 db2sysc 3 db2inst1 12171 12153 14 2014 ? 22-12:38:24 db2sysc 2 db2inst1 12175 12155 15 2014 ? 22-17:23:02 db2sysc 4 dvdata01: ps -ef grep -i db2sysc completed ok Mumber of db2sysc 7 db2inst1 21081 21079 15 2014 ? 22-15:12:20 db2sysc 7 db2inst1 21157 21150 15 2014 ? 22-17:31:29 db2sysc 8 db2inst1 21158 21146 15 2014 ? 22-17:31:29 db2sysc 6 db2inst1 21194 21148 15 2014 ? 23-03:19:41 db2sysc 5 dvdata02: ps -ef grep -i db2sysc completed ok	~ No.
db2inst1 18972 18970 172014 ?26-00:12:51 db2sysc 10db2inst1 19037 19032 152014 ?22-16:09:42 db2sysc 12db2inst1 19042 19034 152014 ?23-03:03:20 db2sysc 9db2inst1 19871 19869 142014 ?22-08:13:05 db2sysc 11dvdata03: ps -ef grep -i db2sysc completed ok	


Tables in DPF

- A single table spread across multiple servers
- How does DB2 know which partition to send a row to?

Single Partitioned Database

DPF Database

#IDUGDB2

How to create a table on more than 1 partition?

No option in 'create table' command to specify which partitions the table is to be created on #IDUGDB2

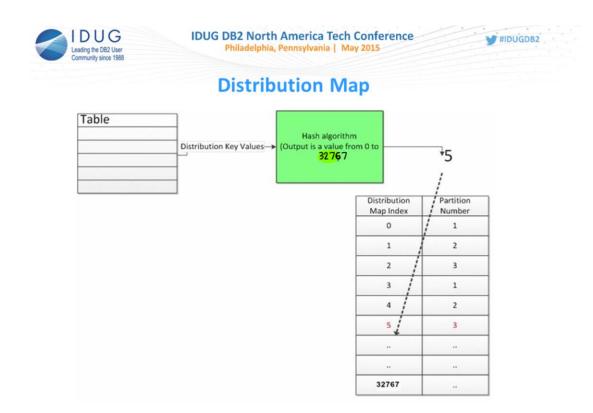
Create table in DPF in 3 steps:

Create a "Partition Group" (Group of partitions)

- -- CREATE DATABASE PARTITION GROUP PDPG (Done only once)
- Create a "Tablespace" in partition group created in step 1
 - -- CREATE LARGE TABLESPACE TBSP1 IN DB PARTITION GROUP PDPG
- Create a table in the tablespace created in step 2

-- CREATE TABLE EDWSDV.EMPLOYEE DISTRIBUTE BY HASH (EMPLOYEE_ID) IN TBSP1 INDEX IN TBSP1_IX;

EMPLOYEE_ID is called Distribution Key



What is a Distribution Key?

- A distribution key is a column (or set of columns) that dictate the database partition on which DB2 will physically store a row in a table. Also called "Hash Key"
- Distribution key applies to each (hash partitioned) table and not to the entire database.

Example:

- ➤ Table2 → DISRIBUTION KEY (col3)
- For a table, a distribution key is defined by using the CREATE TABLE statement with the DISTRIBUTE BY clause.

- When a new row is inserted into a hash partitioned table, DB2 applies the hashing algorithm on the values of distribution keys for that row. The output of the hashing algorithm is a number from 0 to 32767 (was 4095 until DB2 9.7). This number corresponds to one of the entries in the array that contains the value of the database partition number where the row is to be stored.
- In the example below, as the hashing algorithm returned an output value of 5, the row would be stored on partition #3.

Here is a question you should be asking yourselves

- Is every table in DPF spread across multiple nodes?
- How to know if I should spread the table across multiple nodes or not?
- > Does it matter which column I pick as the distribution key?

To Hash or Not – Best Practices

Goal – To exploit parallelism (divide and conquer)

Ask (Data Modeler) for expected cardinality and usage pattern

Hash table with > 100k
 rows (My practice)
 Not a hard-and-fast

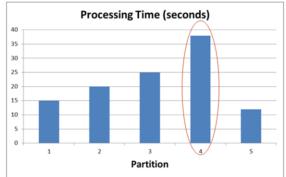
rule; DBA's discretion

Hash large tables to divide work among database partitions Exploiting Parallelism by distributing rows across

#IDUGDB2

partitions SELECT COUNT (*) AS ROW_COUNT, DBPARTITIONNUM(ANY_COLUMN) AS PARTITION_NUM FROM SCHEMA.TABLE GROUP BY DBPARTITIONNUM (ANY_COLUMN) ORDER BY 2 WITH UR; ROW/-COUNT PARTIPION YYUM

400000 1 4000000 2 0 1 records s selected 400000 4


4 record(s) selected

Choosing a Distribution Key

- Goal -- Reduce the time required to process a query
- If the data to be processed is suitably partitioned, parallel execution is possible without excessive overhead and bottlenecks.
 Processing Time (seconds)

Query's run time is as long as time taken by the slowest database partition.

#IDUGDB2

#IDUGDB2

2 Strategies Colocation Vs. Even Data Distribution Co-locate frequently joined tables ➢ Ensure even distribution of a table's data

Let us dig into details...

What is it? What does it do?

Strategy #1: Co-Location

Minimizes data transfer overhead

- Ensures the matching rows between two tables to always reside on the same database partition
- A co-location join can only occur when certain criteria are met:
 - Both joining tables are in the same DB PG.
 - The distribution keys for both tables have same number of columns and compatible data types.
 - > The distribution key columns are partition-compatible.

Strategy #1: Co-Location

When to use it?

#IDUGDB2

Co-locate frequently joined Fact and Dimension tables
 Can result in skew (and hence processing delays) on a subset of partitions – Fact tables are much larger than dimension tables

Tends to be application / workload specific

A single new query which is completely different from the existing ones could prove the distribution strategy to be non-optimal.

Strategy #2: Even distribution of data

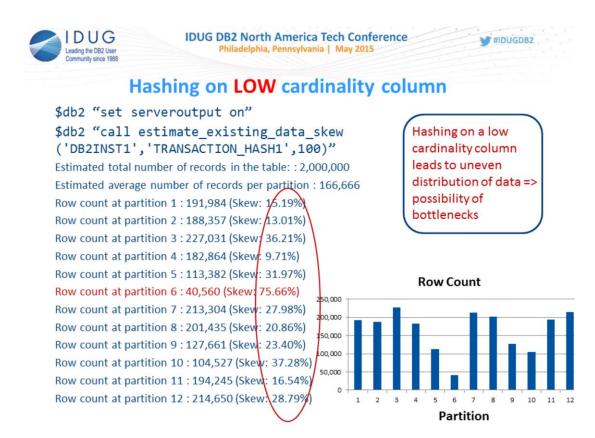
What is it? What does it do?

#IDUGDB2

- Aims to minimize data skew by ensuring even data distribution on disks across multiple nodes
- Multiple database partitions (on which the table is spread out) work on every query
- More parallelism although there could be data transfer across the partitions.
- From experience -- Scales well with data growth Distribution Key cardinality plays a major role

Distribution Key Columns Cardinality and data skew

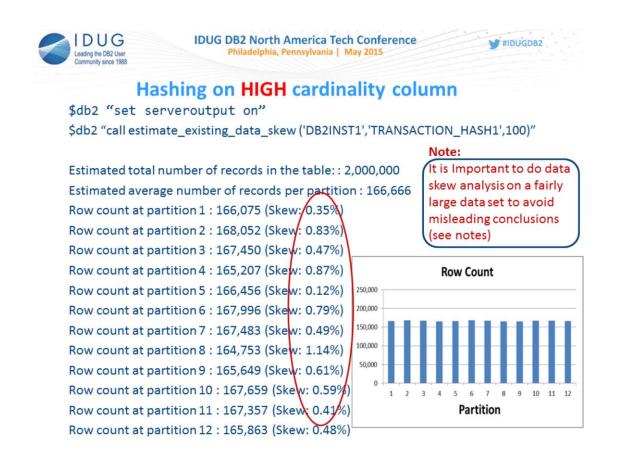
Distribution key – Pick high cardinality column(s)


Best Candidate – Primary Key

Avoid timestamp (or type 'time') → Could result in processing skew if mostly going after a specific time period

≻Hashing on:

Low-cardinality columns leads to data skew => processing skew (possibility)


High-cardinality columns minimizes data skew

SET SERVEROUTPUT command

Specifies whether output from the DBMS_OUTPUT message buffer is redirected to standard output.

Partition # 6 has 76% more rows compared to the avg. of 166k rows.. Such a skew would be a result of distributing a key on low cardinality column.

The skew % would be totally different if analysis is done on a fairly small data set.

For only 120 (multiple of # of database partitions) rows and distribution key = primary key, below is skew data:

Estimated total number of records in the table: : 120 Estimated average number of records per partition : 10 Row count at partition 1 : 106 (Skew: 960.00%) Row count at partition 2 : 0 (Skew: 100.00%) Row count at partition 3 : 0 (Skew: 100.00%) Row count at partition 4 : 14 (Skew: 40.00%) Row count at partition 5 : 0 (Skew: 100.00%) Row count at partition 6 : 0 (Skew: 100.00%) Row count at partition 7 : 0 (Skew: 100.00%) Row count at partition 8 : 0 (Skew: 100.00%) Row count at partition 9 : 0 (Skew: 100.00%) Row count at partition 10 : 0 (Skew: 100.00%) Row count at partition 11 : 0 (Skew: 100.00%) Row count at partition 12 : 0 (Skew: 100.00%)

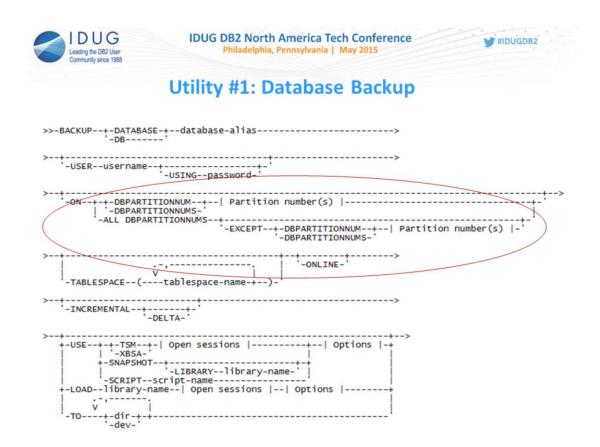
#4: CATALOG DATA IN A DPF DATABASE

What is a Catalog Partition?

- Catalog Partition CREATE DATABASE command was run
- DB2's system catalog tables exist on catalog partition ONLY
- > Usually partition #0
- Resides in IBMCATGROUP partition group Created by default
- How to find which partition is a catalog partition? Use SQL below

db2 "select * from SYSCAT.DBPARTITIONGROUPDEF where DBPGNAME = 'IBMCATGROUP'"

DBPGNAME DBPARTITIONNUM IN_USE IBMCATGROUP 0 Y 1 record(s) selected


Catalog Data in a DPF database

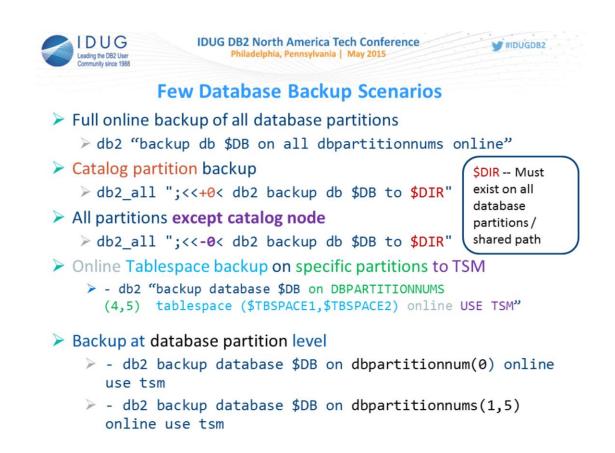
- Catalog data could be read from non-catalog partition as well (although it physically exists on catalog partition)
- Schemas starting with SYS reside on catalog partition
- Single catalog entry for each table/view/index (even though data tables exist on multiple partitions)
 - >syscat.tables / syscat.views
 - ➤ syscat.indexes
 - ➤ syscat.tablespaces
- SQLs in the bonus section
- Which database partitions is the table on?
- Which database partitions is the tablespace on?

#5: DB2 UTILITIES IN A DPF DATABASE

#IDUGDB2

For a database backup command, the highlighted area is the only difference (in syntax) between DPF and non-DPF environments

#IDUGDB2


Utility #1: Database Backup

db2 "BACKUP DATABASE TESTDB ON ALL DBPARTITIONNUMS online"
Part Result
....
0000 DB20000I The BACKUP DATABASE command completed successfully.
0001 DB20000I The BACKUP DATABASE command completed successfully.
0002 DB20000I The BACKUP DATABASE command completed successfully.
0003 DB20000I The BACKUP DATABASE command completed successfully.
0003 DB20000I The BACKUP DATABASE command completed successfully.
0003 DB20000I The BACKUP DATABASE command completed successfully.

- 4 backup files generated -- single timestamp for all images
- The backup image name indicates details like database name, type of backup (full offline), Instance Name, partition being backed, catalog number, timestamp and sequence number

TESTDB.0.db2inst1.NODE0000.CATN0000.20141201131655.001 TESTDB.0.db2inst1.NODE0001.CATN0000.20141201131655.001 TESTDB.0.db2inst1.NODE0002.CATN0000.20141201131655.001 TESTDB.0.db2inst1.NODE0003.CATN0000.20141201131655.001

SSV (Single System View) backup generates multiple (as many as # of partitions) backup image files, all with the same timestamp.

Best Practices for "Building a recovery strategy for an IBM Smart Analytics System data warehouse". Refer to the link below:

https://www.ibm.com/developerworks/community/wikis/form/anony mous/api/wiki/0fc2f498-7b3e-4285-8881-2b6c0490ceb9/page/d78c9663-638f-4aeb-9135ee54f23ec0b8/attachment/c678ff88-de64-455b-b89fd91f82b5c05c/media/IBM-SAS_Recovery-BP.pdf

Leading the DB2 User Community since 1988	IDUG DB2 North America Tech Conference Philadelphia, Pennsylvania May 2015	#IDUGDB2
	Utility #2: Database Restore	
	roach was to restore catalog partition g partitions – No need to do this any r	
No differer	nce in syntax between single partition	ed and DPF
+-REBUILD WITH +-TABLESPACE +-HISTORY FII +-COMPRESSION -LOGS	tablespace-name-+)-+ tablespace-name-+)-+ 	

Best Practices for "Building a recovery strategy for an IBM Smart Analytics System data warehouse". Refer to the link below:

https://www.ibm.com/developerworks/community/wikis/form/anony mous/api/wiki/0fc2f498-7b3e-4285-8881-2b6c0490ceb9/page/d78c9663-638f-4aeb-9135ee54f23ec0b8/attachment/c678ff88-de64-455b-b89fd91f82b5c05c/media/IBM-SAS_Recovery-BP.pdf

Few Restore / Recover Scenarios

- Two approaches Serial / Parallel restore
 - > db2_all "db2 RESTORE DATABASE EDWDBPR USE TSM TAKEN
 AT 20140318143005 WITHOUT PROMPTING"
 - > db2_all "|| db2 RESTORE DATABASE EDWDBPR USE TSM TAKEN AT 20140318143005 WITHOUT PROMPTING" - Notice space between " and db2.
- > db2_all "<<+3<db2 \"restore database bcudb1 tablespace (pdts_in, pdts_ini) online use tsm taken at 20140501143616 replace existing \" " → Restore tablespaces on partition #3
- db2 "recover database \$DB to end of logs on dbpartitionnum (0)" – Recover catalog partition

Tablespace level restore scenarios

- Commands could be run from any node
- Table spaces on non-catalog partitions
 - db2_all "||<<-0< db2 RESTORE DATABASE TESTDB TABLESPACE \(TBSP3, TBSP3_IX, TBSP4, TBSP4_IX\) ONLINE USE TSM TAKEN AT 20140227143006 REPLACE EXISTING WITHOUT PROMPTING"
- Table spaces on all partitions
 - db2_all "|| db2 RESTORE DATABASE TESTDB TABLESPACE \(TBSP5, TBSP5_IX, TBSP6, TBSP6_IX\) ONLINE USE TSM TAKEN AT 20140227143006 REPLACE EXISTING WITHOUT PROMPTING"

Roll Forward – Quick Note

- Apply transactions in the database log files
- Usually run after restore to recover activity after backup
- Roll forward could only be run from catalog partition
- Default behavior -- DB / TBSP roll forward applies to all database partitions (use 'EXCEPT' clause for specific partitions)
- Recover from a rouge DML run immediately after backup:
 - db2 "ROLLFORWARD DATABASE TESTDB TO END OF BACKUP AND STOP TABLESPACE (TBSP5, TBSP5_IX, TBSP6, TBSP6_IX) ONLINE"
- Point in Time Roll Forward
 - db2 "ROLLFORWARD DATABASE TESTDB TO yyyy-mm-ddhh.mm.ss AND STOP TABLESPACE (TBSP5, TBSP5_IX, TBSP6, TBSP6_IX) ONLINE"

#IDUGDB2

Runstats in a DPF database

Runstats' influence on catalog info

- > \$db2 "select card from syscat.tables where tabname =
 'TRANSACTION_HASH1' AND TABSCHEMA = 'DB2INST1' with ur" -2303808
- > \$db2 "select count(*) from DB2INST1.TRANSACTION_HASH1" --2000000
- DB2's system catalogs have the row count (card) for this table as 2.30 M, a whopping 15% off from the correct value.
- This is because, when runstats command is run, by default, DB2 does the runstats on only the 1st partition on which the table is created or the partition currently connected to.

DB2's catalog information in a DB2 DPF database is heavily influenced by the choice of distribution keys.

Choose High Cardinality Distribution Key to avoid this problem !

If data skew cannot be controlled, explicitly connect to the partition that has largest row count for runstats – **Moving target !**

#IDUGDB2

#6: DATA SKEW

Data Skew

- Avoid table level skew Key is to pick high cardinality distribution keys (already discussed)
- Partition level skew How skewed are top 100 largest tables?
 - How to find partition level skew ? Use db2top
- Partition level skew Bottleneck to Backup, Restore
- db2top (option 'p') Gives partition level skew
- SQL for tablespace skew in bonus section

¥IDUGDB2

Partition level Skew

								/	\frown				
Partition	Partition	Buffer	Delta	Delta	Pool	Pool	Channels	Space	Total	Log	Log	Log	Number
Number	Status		BufSent/s	BufRcvd/s	CurrSize			Used	Space	Surrent	First		of Pools
6*	Active	70478	6,034	5,409	3.66	4.36	2617	254.46	310.0G	438334	438333	438382	76
1	Active	272498	646	886	4.46	5.56	6245	460.5G	519.76	119469	119168	119217	
2	Active	272498	283	249	4.46	5.4G	6245	465.5G	531.56	120435	120434	120483	35
3	Active	272498	261	214	4.46	5.5G	6242	488.5G	587.46	123444	123443	123492	38
4	Active	272498	277	242	4.46	5.4G	6245	460.4G	521.46	119547	119546	119595	35
5	Active	272880	596	799	4.46	5.4G	6239	459.8G	525.06	119100	119099	119148	38
6	Active	272880	519	666	4.46	5.4G	6248	475.4G	555.86	120775	120774	120823	35
7	Active	272880	537	693	4.46	5.4G	6243	463.3G	525.76	119338	119337	119386	35
8	Active	272880	296	275	4.46	5.4G	6243	619.4G	679.46	129727	120726	120775	35
9	Active	273351	276	235	4.46	5.4G	6247	460.7G	525.0G	11/8177	118176	118225	38
10	Active	273351	291	266	4.46	5.4G	6246	460.16	541.46	18944	118943	118992	36
11	Active	273351	298	279	4.46	5.4G	6247	457.9G	513.26	/119192	119191	119240	35
12	Active	273351	293	268	4.46	5.46	6249	487.16	536.86	128130	128129	128178	35

#IDUGDB2

#7: INDEX CARDINALITY

Index Cardinality in a DPF database

- Index Cardinality -- Number of distinct values of column(s) that make up a given index
- Index I1 defined on column C1 on a table S1.T1:
 - db2 "select count(distinct(C1)) from syscat.indexes where tabschema
 = 'S1' and tabname = 'T1' with ur"

Why should you care?

- Low-cardinality indexes negatively impact performance DROP THEM !!!
- Index cardinality -- straight forward (above SQL) Single Partitioned Database
- Tricky in DPF -- the catalog data for indexes that do not have primary key columns in them seems to be incorrect.

Example to illustrate Index Cardinality in a DPF database

	DB2	NST1.EMPLOYEE	
	Column	Data Type	
	COL1	INTEGER	Primary Key
<	COL2	BIGINT	Unique Values
	COL3	TIMESTAMP	

INDEX_NAME	FULLKEYCARD (SYSCAT.INDEXES)	TABLE_CARD (SYSCAT.INDEXES)	INDEX_CARD_PERCENT = 100*(FULLKEYCARD / TABLE_CARD)
PK_EMPLOYEE (COL1)	10361208	10361208	100
I1_EMPLOYEE (COL2, COL1) (has PK column)	10361208	10361208	100
I2_EMPLOYEE (COL3) (no PK column)	430632	10361208	4.15
I3_EMPLOYEE (COL2)	863434	10361208	8.33 (Expected 100)

8.33% --Very low Index Cardinality DROP INDEX!!!

#IDUGDB2

Example to illustrate Index Cardinality in a DPF database

Multiply INDEXCARD (from catalogs) by no. of partitions in which the table is on to get the correct FULLKEYCARD value.

For I3_EMPLOYEE:

IDUG

- Multiply 8.33 (index card from catalogs) by 12 to get corrected index cardinality percentage (8.33*12) = 99.96 ~ 100% (It was an index on unique values)
- You might drop indexes based on their (low) cardinality if you strictly go by catalog data
- How to calculate the 'corrected' Index Cardinality?
 - http://db2talk.com/2014/04/28/index-cardinality-ina-db2-multi-partitioned-dpf-database/

#IDUGDB2

#8: ANALYZING CONTENT IN DB2DIAG.LOG

#IDUGDB2

db2diag.log

• # of db2diag.log(s) → # of servers in DPF system

2015-02-04-15.29.34.320410-300 E32879553E447 LEVEL: Info PID : 12171 TID : 46912916941120PROC : db2sysc 2 INSTANCE: db2inst1 NODE : 002 EDUID : 906 EDUNAME: db2logmgr (EDW) -2 FUNCTION: DB2 UDB, data protection services, sqlpgArchiveLogFile, probe:3180 DATA #1 : completed archive for log file S0118169.LOG to TSM chain 2 from /db2fs/db2inst1/NODE0002/SQL00001/SQLOGDIR/.

- db2diag -global -merge \$DIR → Merge logs
- db2diag -rc \$HEXCODE → reason-code for hexa-decimal code
- db2diag -A → Archives existing db2diag.log and creates a new one on the current node.
- db2diag -A global → Archives existing db2diag.log and creates a new one on all nodes

#IDUGDB2

#9 DB2TOP

#IDUGDB2

db2top

#####		######		#####	####	###	######	: #:	 ##	For	help type h or
	#				#			: #		db2	top -h: usage
								: #			
		******		#####	#			: #:	##	Sta	tus: Active
								; #		Upt	ime: 136d 12h:40m:46s
			#		#			# #		Las	t backup
										201	5/01/18 - 08:00:05
				Snapshot			###### r V2.0	ŧ #		201	5/01/10 - 00:00:05
				Snapshot	t Mon			# #		201	5/01/10 - 00:00:05
Jse th	hes			Snapshot	t Mon ate:	itor		# #			Agent
Jse th 1 - Da	hes ata	e keys	t	Snapshot o naviga	t Mon ate: 1 -	itor Sess	r V2.0			a -	
Jse th d - Da t - Ta	hes ata abl	e keys ibase	t s	Snapshot o naviga	t Mon ate: 1 -	Sess Buff	r V2.0 sions ferpool			a - T -	Agent
Jse th d - Da t - Ta D - Dy	hes ata abl yna	e keys base espace	t s L	Snapshot o naviga	t Mon ate: 1 - b - U -	Sess Buff Lock	r V2.0 sions ferpool			a - T - m -	Agent Tables
Jse th d - Da t - Ta D - Dy	hes ata abl yna tat	e keys base espace mic SQ ements	t s L	Snapshot o naviga	t Mon ate: 1 - b - U - p -	Sess Buff Lock Part	r V2.0 sions ferpool ks			a - T - m - u -	Agent Tables Memory

Single view for all database partitions SQL activity, Locks, Sessions, Utilities on all partitions

#IDUGDB2

db2top

Partition Partiti Number Status	on Buffer LWM	Delta BufSent/s	Delta BufRcvd/s	Pool CurrSize	Pool HWM	Channels Free	Space Used	Total Space	Log Current
Ot Active		1 620	3 100	3 46	4 26	2620	222 46	107.00	400000
0* Active	70478	1,629	3,128	3.4G	4.3G	2628	232.4G	297.0G	422303
1 Active	272498	347	145	4.3G	5.5G	6248	412.3G	472.76	115404
2 Active	272498	348	150	4.3G	5.4G	6248	416.6G	486.3G	116628
3 Active	272498	351	152	4.3G	5.5G	6248	436.66	539.26	119442
4 Active	272498	355	152	4.36	5.4G	6248	412.3G	473.66	115779
5 Active	272880	348	148	4.3G	5.4G	6253	411.7G	475.36	115350
6 Active	272880	345	147	4.3G	5.4G	6253	425.16	506.7G	116874
7 Active	272880	342	145	4.3G	5.4G	6253	414.6G	481.2G	115533
8 Active	272880	341	145	4.3G	5.4G	6253	558.6G	619.66	116754
9 Active	273351	343	144	4.3G	5.4G	6249	412.5G	473.7G	114414
10 Active	273351	339	143	4.36	5.4G	6249	411.9G	494.86	115160
11 Active	273351	337	143	4.3G	5.4G	6249	410.0G	468.76	115433
12 Active	273351	337	143	4.3G	5.4G	6249	418.0G	486.6G	124305

				C	lb2t	ор			
					Utiliti	ies			
Hash Value		Utility Start Time	Utility Type	Uti Utility Pri State	Invoker Type	Completed Work	Work Unit	Phase Prog% Start Time	Progress Description
2122241	13+	06:12:14.745364	Backup	0 Execute	User		0 Bytes	0% 06:12:14.74537	4

Locks	Linux,part=[25/2	5],DB2INST1:EDWDBDV
		Cpu=1,[qp=off]

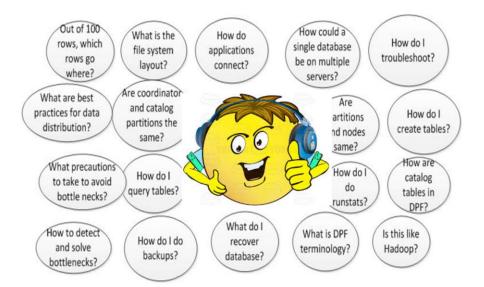
#IDUGDB2

#10 HANDY SQLS

Which database partitions is the tablespace on?

SELECT CHAR(tbspace, 20) TABLESPACE, CHAR(pgs.dbpgname,20) AS partition_group, Listagg(DBPARTITIONNUM, ',') within group (ORDER BY DBPARTITIONNUM) A S PARTITIONS FROM syscat.dbpartitiongroupdef pgs, syscat.tablespaces tablespaces WHERE tablespaces.ngname = pgs.dbpgname AND tablespaces.tbspace = 'TBSP1' GROUP BY CHAR(pgs.dbpgname,20), tbspace WITH UR;

 TBSP1
 PDPG
 1,2,3,4,5,6,7,8,9,10,11,12


Which partitions does a table belong to?

SELECT	CHAR(tabschema, 20) AS SCHEMA,
	CHAR(tabname, 40) AS table,
	CHAR(tablespaces.tbspace, 20) AS TABLESPACE,
	CHAR(pgs.dbpgname,20) AS partition_group,
	Listagg(DBPARTITIONNUM, ',') within group (ORDER BY DBPARTITIONNUM) AS
PARTITIC	WS
FROM	syscat.tables tables ,
	syscat.tablespaces tablespaces, SQL does not
	syscat dbnartitiongroundef ngs
WHERE	tabschema = 'EDW' work for range
AND	tabname = 'EMPLOYEE' partitioning
AND	tablespaces.tbspace = tables.tbspace tables
AND	tablespaces.dbpgname = pgs.dbpgname
GROUP BY	′pgs.dbpgname,
	tabname,
	tabschema,
	tablespaces.tbspace WITH UR;
SCHEMA	TABLESPACE PARTITION_GROUP PARTITIONS
EDW	DV20140902114851 PDPG 1,2,3,4,5,6,7,8,9,10,11,12

#IDUGDB2

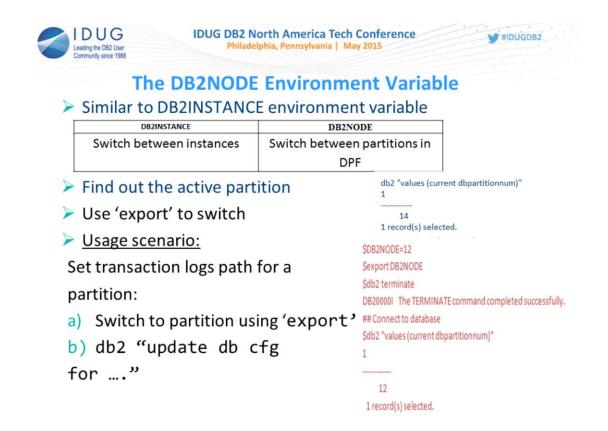
Summary

Thank you for attending. Any Questions?

#IDUGDB2

Pavan Kristipati

The Huntington National Bank pavan.kristipati@huntington.com


CO2 – DB2 DPF: What a single partitioned DBA needs to know in 10 points

Please fill out your session evaluation before leaving!

#IDUGDB2

Bonus Slides

Refer to http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_9.1.0/com.ibm. db2.udb.uprun.doc/doc/r0006351.htm for more details on these examples.

db2pd

- Useful command for monitoring and troubleshooting
- No latches => faster retrieval and no engine resources are used
- Multiple options to define scope of the command
- Command output depends on the partition/node it is run on
- Expects database to be active for 'database' option
- db2pd –help for usage and options

#IDUGDB2

db2pd for DPF

Option	Description
Addnode	Shows the progress of the "ADD DATABASE PARTITION SERVER" operation. It must be run on the partition Server that is being added.
dbptnmem	Shows database partition memory statistics.
-fcm	Shows information about the fast communications manager (FCM) that facilitates communication between the partitions.
alldbpartitionnums	Output for the db2pd command will be shown for all db partitions on the physical Server the command is run on.
dbpartitionnum <number></number>	Output for the db2pd command will be shown once for the specified partition or range of partitions specified.
-member all (-global)	Runs command on all (remote) hosts

How to save db2pd output from multiple nodes to a local file?

• Use the option '-file filename' to save output on the machine the command is run

\$db2pd -file db2pd_osinfo -osinfo -host host1, host2

\$ls -ltr db2pd_osinfo

-rw-r--r-- 1 db2inst1 bcuigrp 221 2015-01-19 14:33 db2pd_osinfo

db2pd - alldbpartitionnums vs. member all

- Scenario: In a DPF database, run 'db2pd' command to collect information on Active Statements on all database partitions.
- Usual Suspect 'alldbpartitionnums' clause.
- db2pd -d proddb -alldbpartitionnums -activestatements
- Or is it -member all?

IDUG

Leading the DB2 User Community since 1988

- db2pd -d proddb -member all -activestatements
- What is the right option to use?

#IDUGDB2

How to display info from all db partitions Choice #1: db2pd - alldbpartitionnums

db2inst1@hostdata1>db2pd-d PRODDB-alldbpartitionnums-activestatements

(removed repeating header for partitions #6, #7, #8)

Database Partition 5 -- Database PRODDB -- Active -- Up 136 days 13:28:10 -- Date 2015-01-19-13:21.14.752850 Partitions Active Statement List: Hostadm01 0 Address AppHandl [nod-index] UOW-ID StmtID AnchID StmtUID 1,2,3,4 EffISO EffLockTOut EffDegree EntryTime StartTime LastRefTime 0x00002AAB9C7710A0 1503 [000-01503] 2 2 910 21781 Hostdata02 5,6,7,8 Mon Jan 19 13:21:04 Mon Jan 19 13:21:04 Mon Jan 19 13:21:04 1 -1 0 Hostdata03 9,10,11,12

 Database Partition 6 -- Database PRODDB -- Active -- Up
 136 days 13:28:10 -- Data 2015-01-19-13:21:14.769036

 0x00002AAB9E225B0
 1503
 [000-01503] 2
 2
 910
 21781

 1
 -0
 Mon Jan 19
 13:21:04 Mon Jan 19
 13:21:04 Mon Jan 19
 13:21:04

 Database Partition 7 -- Database PRODDB -- Active -- Up 136 days 13:28:10 -- Date 2015-01-19-13.21.14.784791

 0x00002AAB9C51A500
 1503
 [000-01503] 2
 2
 910
 21781

 1
 -1
 0
 Mon Jan 19 13:21:04 Mon Jan 19 13:21:04 Mon Jan 19 13:21:04
 Mon Jan 19 13:21:04

 Database Partition 8 -- Database PRODDB -- Active -- Up 136 days 13:28:10 -- Date 2015-01-19-13:21.14.800534

 0x00002AAB9C9CDFC0 1503
 [000-01503] 2
 2
 910
 21781

 1
 -1
 0
 Mon Jan 19 13:21:04 Mon Jan 19 13:21:04 Mon Jan 19 13:21:04
 Mon Jan 19 13:21:04

#IDUGDB2

How to display info from all db partitions Choice #2: db2pd - member all

db2inst1@hostdata1>db2pd -d PRODDB -member all -activestatements

(removed header ; replaced 'activestatements' output with '.....' for brevity) Database Partition 9 -- Database PRODDB -- Active -- Up 136 days 13:28:45 -- Date 2015-01-19-13.21.51.192125

Database Partition 10 -- Database PRODDB -- Active -- Up 136 days 13:28:45 -- Date 2015-01-19-13.21.51.202655

Database Partition 11 -- Database PRODDB -- Active -- Up 136 days 13:28:45 -- Date 2015-01-19-13.21.51.213070

Database Partition 12 -- Database PRODDB -- Active -- Up 136 days 13:28:45 -- Date 2015-01-19-13.21.51.223456

Database Partition 12 Database PRODUB Active Up 136 days 13:28:45 Date 2015-01-19-1	Node	Partitions
hostdata03: db2pd -d PRODDB -member completed ok	Hostadm01	0
	Hostdata01	1,2,3,4
Database Partition 5 Database PRODDB Active Up 136 days 13:28:42 Date 2015-01-19-13	Hostdata02	5,6,7,8
Database Partition 6 Database PRODDB Active Up 136 days 13:28:42 Date 2015-01-19-1	Plostdata03	9,10,11,12

Database Partition 7 -- Database PRODDB -- Active -- Up 136 days 13:28:42 -- Date 2015-01-19-13.21.46.102688

Database Partition 8 -- Database PRODDB -- Active -- Up 136 days 13:28:42 -- Date 2015-01-19-13.21.46.113151

.....

hostdata02: db2pd -d PRODDB -member ... completed ok

(Output continued next slide...)

How to display info from all db partitions Choice #2: db2pd - member all

db2pd output continued...

Database Partition 1 Database PRODDB Active Up 136 days 13:28:46 Date 2015-0	01-19-13.21.48.819865
Database Partition 2 Database PRODDB Active Up 136 days 13:28:44 Date 2015-0	01-19-13.21.48.830437
Database Partition 3 Database PRODDB Active Up 136 days 13:28:44 Date 2015-0	01-19-13.21.48.840849
Database Partition 4 Database PRODDB Active Up 136 days 13:28:44 Date 2015-0	01-19-13.21.48.851231
hostdata01: db2pd -d PRODDB -member completed ok	
Database Partition 0 Database PRODDR Active Up 136 days 14:09:13 Data 2015 (01 10 13 21 47 951720

Database Partition 0 -- Database PRODDB -- Active -- Up 136 days 14:08:13 -- Date 2015-01-19-13.21.47.851729

hostadm01: db2pd -d PRODDB -member ... completed ok

'-member all' displays db2pd output from all hosts and partitions (if applicable) and hence is the right option to use in this scenario