
Welcome to the presentation.

Thank you for taking your time for being here.

In this presentation, my goal is to share with you 10 practical

points that a single partitioned DBA needs to know to get head

start on administering and managing a DPF database.

Even if you are a seasoned DB2 DPF DBA, my hope is that you

would get something out of this presentation.

We will have time at the end for questions.

For the DB2Night Show today, the timing is perfect to learn about

DPF or MPP because DB2 11.1 has just been released which

has support for BLU on MPP. That means columnar technology

is now available for DPF databases as well. This is going to be

huge one and a game changer for many shops that run DPF

because of multi-fold performance gains that BLU can offer and

of course we shouldn’t forget one of the most major selling

points of BLU which is compression.

I am eager to see how BLU plays out in MPP myself.

Objectives of the presentation that were included when abstract

was submitted to IDUG for consideration.

High level Agenda for this presentation.

Agenda could be divided into 2 parts.

In Part 1, DPF will be introduced

In Part 2, we will discuss 10 points that a single partitioned DBA

needs to know about DPF.

These are some of the common questions that a single partitioned

DBA who is getting ready to work on DPF usually has.

While each of these questions could be a presentation by itself, we

aim to address (from a high level) most of these questions in this

presentation except for performance related topics.

You should have basic understanding of each of these topics by

the end of this presentation.

A node in DPF is a UNIX server/LPAR.

A partition in DPF is a piece of database.

When there are 2 partitions on a node, those are

called logical partitions

Each database partition has its own set of computing

resources, including CPU and storage. In a DPF

environment, each table row is distributed to a

database partition according to the distribution key

specified in the CREATE TABLE statement. When

a query is processed, the request is divided so

each database partition processes the rows that it

is responsible for. Essentially, DPF is a scalability

feature. DPF can maintain consistent query

performance as the table grows by providing the

capability to add more processing power in the form

of additional database partitions. This capability is

referred to as providing linear scalability using

DB2's shared nothing architecture.

DPF relies on both these techniques but majorly uses Function

shipping.

It ships SQL (function) from the coordinator node to database

partitions.

Result data is shipped from data nodes to coordinator node after

data processing is done on data nodes.

All the 1M rows from each database partition are

shipped via network to the Coordinator partition

which then processes the query.

If the table has 10 columns, all columns are shipped

irrespective of if the SQL really needs all the

columns or not.

The select statement is broadcasted to each of the

individual partitions and the predicates are applied

to reduce the number of rows.

The number of columns are also reduced to the

number that is required to provide the answer to the

application.

The results are passed to the coordinator partition

which is then passed to the end user (application).

This approach results in reduction of network traffic

because the SQL function is shipped to the data

instead of data being shipped to the SQL

If an ORDER BY clause was specified in the SQL,

sorts would be done by each partition process and

the coordinator partition would merge the answer

set.

Instance owner’s home directory – NFS -- shared

across nodes

Local mount points for transaction and archive logs

DIAGPATH – Diagnostic Path
Avoid NFS or shared mount point
Best Practice = Local mount point

In a large DPF system, an NFS DIAGPATH could

be IO bound – Heavy write activity from multiple

hosts at the same time

Refer to http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_9.1.0/com.ibm.

db2.udb.uprun.doc/doc/r0006351.htm for more details on these

examples.

Syntax to create a partition group:

http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm

.db2.luw.sql.ref.doc/doc/r0000921.html?cp=SSEPGG_10.5.0%2

F2-12-7-62

Syntax to create Tablespace:

http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm

.db2.luw.sql.ref.doc/doc/r0000929.html?cp=SSEPGG_10.5.0%2

F2-12-7-102

When a new row is inserted into a hash partitioned table, DB2

applies the hashing algorithm on the values of distribution keys

for that row. The output of the hashing algorithm is a number

from 0 to 32767 (was 4095 until DB2 9.7). This number

corresponds to one of the entries in the array that contains the

value of the database partition number where the row is to be

stored.

In the example below, as the hashing algorithm returned an output

value of 5, the row would be stored on partition #3.

SET SERVEROUTPUT command

Specifies whether output from the DBMS_OUTPUT

message buffer is redirected to standard output.

Partition # 6 has 76% more rows compared to the avg. of 166k

rows.. Such a skew would be a result of distributing a key on low

cardinality column.

The skew % would be totally different if analysis is done on a fairly

small data set.

For only 120 (multiple of # of database partitions) rows and

distribution key = primary key, below is skew data:

Estimated total number of records in the table: : 120

Estimated average number of records per partition : 10

Row count at partition 1 : 106 (Skew: 960.00%)

Row count at partition 2 : 0 (Skew: 100.00%)

Row count at partition 3 : 0 (Skew: 100.00%)

Row count at partition 4 : 14 (Skew: 40.00%)

Row count at partition 5 : 0 (Skew: 100.00%)

Row count at partition 6 : 0 (Skew: 100.00%)

Row count at partition 7 : 0 (Skew: 100.00%)

Row count at partition 8 : 0 (Skew: 100.00%)

Row count at partition 9 : 0 (Skew: 100.00%)

Row count at partition 10 : 0 (Skew: 100.00%)

Row count at partition 11 : 0 (Skew: 100.00%)

Row count at partition 12 : 0 (Skew: 100.00%)

For a database backup command, the highlighted area is the only

difference (in syntax) between DPF and non-DPF environments

SSV (Single System View) backup generates multiple (as many as

of partitions) backup image files, all with the same timestamp.

Best Practices for “Building a recovery strategy for an IBM Smart

Analytics System data warehouse”. Refer to the link below:

https://www.ibm.com/developerworks/community/wikis/form/anony

mous/api/wiki/0fc2f498-7b3e-4285-8881-

2b6c0490ceb9/page/d78c9663-638f-4aeb-9135-

ee54f23ec0b8/attachment/c678ff88-de64-455b-b89f-

d91f82b5c05c/media/IBM-SAS_Recovery-BP.pdf

Best Practices for “Building a recovery strategy for an IBM Smart

Analytics System data warehouse”. Refer to the link below:

https://www.ibm.com/developerworks/community/wikis/form/anony

mous/api/wiki/0fc2f498-7b3e-4285-8881-

2b6c0490ceb9/page/d78c9663-638f-4aeb-9135-

ee54f23ec0b8/attachment/c678ff88-de64-455b-b89f-

d91f82b5c05c/media/IBM-SAS_Recovery-BP.pdf

Refer to http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_9.1.0/com.ibm.

db2.udb.uprun.doc/doc/r0006351.htm for more details on these

examples.

