
1



2



The explain facility is used to display the query access plan chosen by the 

query optimizer to run an SQL statement. It contains extensive details about 

the relational operations used to run the SQL statement such as the plan 

operators, their arguments, order of execution, and costs. Since the query 

access plan is one of the most critical factors in query performance, it is 

important to be able to understand the explain facility output in order to 

diagnose query performance problems.

Explain information is typically used to: 

understand why application performance has changed 

evaluate performance tuning efforts 

3



4



5



6



7



8



There are 10 explain tables, and 6 index advisor tables. This talk will not touch 

upon the index advisor tables. 

The Explain Instance table contains information about a grouping of explain 

statements. This grouping is usually for static SQL statements that are part of 

the same source file.

The Explain Statement table contains information about a specific statement. 

There are 2 entries in this table for each SQL statement explain: the original 

statement, and the planned statement. Associated with the planned statement, 

is the rest of the Query Access Plan.

The Explain Operator table contains information about each of the operations 

in the Query Access Plan. 

The Explain Stream table describes how each of the operators are linked 

together, and link to Explain Objects. 

The Explain Objects tables describes all of the objects (indexes, tables, table 

functions) used by the Query Access Plan

The Explain Predicate tables describes all of the predicates applied by a 

particular Explain Operator.

The Explain Argument table describes additional arguments for the operator.

The Explain Diagnostic table contains diagnostic information about the 

statement such as tables or indexes that are missing statistics or why an MQT 

or statistical view wasn’t used.

The Explain Diagnostic Data table contains multiple rows for each diagnostic 



message. These rows contain message tokens associated with the message.

The Explain Actuals table contains runtime actuals information. Currently, it contains 

the actual number of rows processed by each operator in the EXPLAIN_OPERATOR 

table.

9



10



11



12



13



14



15



16



17



http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.rt

n.doc/doc/r0061346.html?cp=SSEPGG_10.5.0%2F3-6-1-3-10-48&lang=en

INSERT INTO REPOSITORY_SECTIONS(STMT_TEXT, STMTID, 

PLANID, SEMANTIC_ENV_ID, SECTION_DATA) SELECT STMT_TEXT, 

STMTID, PLANID, SEMANTIC_ENV_ID, ( SELECT B.SECTION_ENV 

FROM TABLE(MON_GET_SECTION(A.EXECUTABLE_ID)) AS B) 

SECTION_DATA FROM 

TABLE(MON_GET_PKG_CACHE_STMT(NULL,NULL,NULL,-2)) AS A

You can use this information to build a history of statements that ran. You can 

use the EXPLAIN_FROM_DATA stored procedure to examine the access plan 

for each saved statement by passing the saved section to the stored procedure.

18

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0061346.html?cp=SSEPGG_10.5.0/3-6-1-3-10-48&lang=en


19



Example query to retrieve parameters for EXPLAIN_FROM_CATALOG call:

select r.routineschema, r.routinename, d.bschema as pkgschema, d.bname as 

pkgname, s.version as pkgversion, s.sectno

from SYSCAT.STATEMENTS AS S,

SYSCAT.ROUTINEDEP AS D,

SYSCAT.ROUTINES   AS R

WHERE  D.BTYPE = 'K' AND

R.SPECIFICNAME = D.ROUTINENAME AND

R.ROUTINESCHEMA = D.ROUTINESCHEMA AND

S.PKGSCHEMA = D.BSCHEMA AND

S.PKGNAME = D.BNAME AND

R.ROUTINENAME = ;

>>-EXPLAIN_FROM_CATALOG----------------------------------------->

>--(--pkgschema--,--pkgname--,--pkgversion--,--sectno--,--explain_schema-->

>--,--explain_requester--,--explain_time--,--source_name--,--source_schema--

20



,--source_version--)-><

20



21



22



23



24



25



26

http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.perf.doc/do

c/c0056362.html

http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0

056929.html?cp=SSEPGG_10.5.0%2F3-6-1-3-18-16



27

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0056362.html?lang=en

Setup:

Enable DB configuration parameter if section actuals collection is to be enabled for the entire database.

Alternatively, they can be enabled at the session level using WLM_SET_CONN_ENV(). See steps further below.

DB2 UPDATE DATABASE CONFIGURATION USING SECTION_ACTUALS BASE;

Collection:

The easiest method is to use the db2caem tool:

db2caem -d <dbname> -st "SQL stmt"

Otherwise, these are the manual steps:

Create event monitor

CREATE EVENT MONITOR ACTEVMON FOR ACTIVITIES WRITE TO TABLE;

There are 2 methods to perform collection:

1) WLM setup:

Create workload or use default workload (to collect activity data)

2) Use WLM_SET_CONN_ENV stored procedure for the current connection

call wlm_set_conn_env(null, '<collectactdata>with details, section </collectactdata><collectsectionactuals>base</collectsectionactuals>');

Activate activity event monitor

SET EVENT MONITOR ACTEVMON STATE 1;

Execute SQL statement

Locate SQL statement information in event monitor table to pass to EXPLAIN_FROM_ACTIVITY stored procedure:

SELECT APPL_ID,       UOW_ID,       ACTIVITY_ID,       STMT_TEXT FROM ACTIVITYSTMT_ACTEVMON;

-- APPL_ID                    UOW_ID    ACTIVITY_ID     STMT_TEXT

-- ------------------------- -------- -------------- ---------------

-- *N2.DB2INST1.0B5A12222841         1               1  SELECT * FROM ...

Populate the explain tables:



CALL EXPLAIN_FROM_ACTIVITY( '*N2.DB2INST1.0B5A12222841', 1, 1, 'ACTEVMON', 'MYSCHEMA', ?, ?, ?, ?, ? );

Format the explain tables as usual e.g. db2exfmt

27



28

http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.perf.doc/do

c/t0056414.html



http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.rt

n.doc/doc/r0052902.html?cp=SSEPGG_10.5.0%2F3-6-1-3-8-1&lang=en

29



http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admi

n.perf.doc/doc/c0011762.html?cp=SSEPGG_10.5.0%2F2-6-2-10-11-

1&lang=en

Synchronous statistics collection does not store the statistics in the system 

catalog. Instead, the statistics are stored in a statistics cache and are later 

stored in the system catalog by an asynchronous operation. This storage 

sequence avoids the memory usage and possible lock contention that are 

involved in updating the system catalog. Statistics in the statistics cache are 

available for subsequent SQL compilation requests.

30

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0011762.html?cp=SSEPGG_10.5.0/2-6-2-10-11-1&lang=en


http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admi

n.mon.doc/doc/r0061351.html?cp=SSEPGG_10.5.0&lang=en

The hash key value which identifies a query plan for a section.

The planid monitor element tracks important performance sensitive aspects of 

the access plan. Such aspects include the list and layout of access plan 

operators, identifiers of the objects that are being accessed, the number of each 

type of predicate for each operator, and performance sensitive operator 

arguments. 

31

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.mon.doc/doc/r0061351.html?cp=SSEPGG_10.5.0&lang=en


http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admi

n.mon.doc/doc/r0061351.html?cp=SSEPGG_10.5.0&lang=en

32



http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admi

n.mon.doc/doc/r0061359.html?lang=en

Use the semantic environment ID with the query statement ID monitor element 

(stmtid) to identify an SQL statement. The semantic compilation environment 

ID is used to distinguish queries that have the same statement text, but are 

semantically different because they reference different objects. For example, 

the table that is referenced in the statement SELECT * FROM T1 depends on 

the value of the default schema in the compilation environment. If two users 

with different default schemas issued this statement, there would be two 

entries for the statement in the package cache. The two entries would have the 

same stmtid value, but would have different values for semantic_env_id.

Inexact statement matching rules:

http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admi

n.perf.doc/doc/c0059000.html?cp=SSEPGG_10.5.0&lang=en

33

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.mon.doc/doc/r0061359.html?lang=en


PLANIDs should be compared for the 'same' SQL statement, executed within 

the 'same' semantic or compilation environment. The semantic environment 

includes the schema and function path. For example, the same SQL statement 

could have different access plans if it were issued with different schemas, 

because it references tables with the same names, but different defintions. 

Monitoring and explain report a semantic environment id 

(SEMANTIC_ENV_ID) for this purpose. So the 'key' for a unique instance of 

an SQL statement is STMTID and SEMANTIC_ENV_ID. 

The STMTID is a hash computed based on a normalized form of the original 

SQL statement text that strips out literals e.g. "select name from customer 

where id = 111" and ""select name from customer where id = 222" would have 

the same STMTID. This means that a given STMTID could have multiple 

PLANIDs associated with it, if the literals affected costing and plan selection. 

One can further differentiate the statements for a given STMTID by comparing 

the original SQL statement text. This approach allows the flexibility to track 

statements based only on STMTID (and SEMANTIC_ENV_ID) and PLANID, 

to reduce the amount of data collected, for applications that don't use input 

variables or statement concentration. 

34



PLANID is based on DB object names excluding their schema. So the PLANID for 

“SELECT C1 FROM T1” could be the same for different T1s in different schemas. 

This is useful for comparing access plans when the T1s have the same definition but 

are in different schemas. This approach also prevents PLANIDs from changing if DB 

objects are recreated. 

34



select es.explain_time, varchar(statement_text,100),

(select varchar(ea.argument_value,20) as planid

from explain_argument ea

where ea.argument_type = 'PLANID' and 

eo.operator_id = ea.operator_id and

es.explain_requester = ea.explain_requester and

es.explain_time = ea.explain_time),

(select varchar(ea.argument_value,20) as stmtid

from explain_argument ea

where ea.argument_type = 'STMTID' and 

eo.operator_id = ea.operator_id and

es.explain_requester = ea.explain_requester and

es.explain_time = ea.explain_time),

(select varchar(ea.argument_value,20) as semantic_env_id

from explain_argument ea

where ea.argument_type = 'SEMEVID' and 

eo.operator_id = ea.operator_id and

es.explain_requester = ea.explain_requester and

es.explain_time = ea.explain_time)

from explain_statement es, explain_operator eo

where

eo.operator_type = 'RETURN' and

es.explain_level = 'O' and

es.explain_requester = eo.explain_requester and

es.explain_time = eo.explain_time;

35



36



37



http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.qb.u

pgrade.doc/doc/t0007195.html?lang=en

38

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.qb.upgrade.doc/doc/t0007195.html?lang=en


39


