Top Ten DB2 for Linux, UNIX and Windows
Explain Tips

© 2015 1BM Corporation

Objectives

» Understand where access plans can exist and how to explain
them

» Learn how to get explain information about query execution

* Learn how to ensure that the explain contains all the important
information

» Discuss some techniques for monitoring access plan changes
over time

» Learn how to interpret and understand explain information

©2015 IBM Corporation

The explain facility — what is it?

* Internal phase of the optimizer that captures critical information used in
selecting the query access plan

» Access plan information is written to a set of tables

» External tools to format explain table contents:

+ Visual Explain
* GUI to render and navigate query access plans
+ Supports DB210.5, DB210.1,DB29.7, DB2 9.5 FP1and DB2 9.1 FP5
+ Common GUI for IBM data servers (DB2/z and IDS)
* Available in a variety of IBM tools
+ db2exfmt
+ Text-based output from the explain tables

+ Command-line interface

The explain facility is used to display the query access plan chosen by the
query optimizer to run an SQL statement. It contains extensive details about
the relational operations used to run the SQL statement such as the plan
operators, their arguments, order of execution, and costs. Since the query
access plan is one of the most critical factors in query performance, it is
important to be able to understand the explain facility output in order to
diagnose query performance problems.

Explain information is typically used to:
understand why application performance has changed
evaluate performance tuning efforts

The explain facility — why should | care?

» Helps understand optimizer decisions
* Maintain a history of access plans for important SQL, during key
transition periods
+ New index additions
» Large data updates/additions
» Catalog statistics changes
» Major version upgrades
« Significant DB or DB manager configuration changes

* Problem determination is easier, and often faster with a reference
access plan to compare against

©2015 IBM Corporation

Phases of SQL Compilation

SaL Compller ok vy *Sometimes references to ‘optimization’
. really mean SQL compilation
Parse Que . .
‘ Y *There is a lot more involved to SQL
Checx compilation
""‘T"“‘ QGMm P
iind « ' Parsing
b -
| W = Catch syntax errors
Pushdown »
i I' - = Generate internal representation of query
oumae 1 Semantic checking
" | = Determineif query makes sense

‘\::"-)4 Reamote 801 r = Incorporate view definitions

[= Add logic for constraint checking and triggers

o[et sode Query optimization
: | E = Modify query toimprove performance
—5 Executo Plan | ¢ = (Quegaeerte)
Explain

= Choosethe most efficient"accessplan”
Pushdown Analysis

= Federation “optimization”
Threaded code generation

= Generate efficient"executable" code

= “Accesssection”

©2015 IBM Corporation

Visual Explain)

Operator name
Cost (timerons)

©2015 IBM Corporation

deGXfmt Cardinality
13274.3
il Operator name
(14) (Operator ID)
35927 Cost (timerons)
21396.5
S — I + I/0 (pages)
5.17575e+06 7.61503e+06 1.19694e+07
NLJOIN NLJOIN NLJOIN
(15) (19) (23)
69588.5 16975.1 21488.4
5272.79 6302.32 9821.4
[--—+---\ J——=+---\ /-=-—+---\
534 9692.41 29.5081 258066 B 2.99234e+06
BTQ IZSCAN DTQ I1ZSCAN BTQ 17SCAN
(16) (18) (20) (22) (24) (26)
48.4706 130.288 13.3421 574.944 0.210476 5372.15
3.62406 9.86735 1 213.546 0 2455.35
1 | | I 1 I
534 1.88517e+08 118.032 1.88517e+08 4 1.88517e+08
1ZSCAN INDEX: DB2INST1 IXSCAN INDEX: DB2INST1 IXSCAN INDEX: DB2INST1
(17 DS¥4 (21) DS¥1 (25) DSX2
47.771 13.1529 0.0688675
3.62406 1 0
1 I 1
19450 2922 63
INDEX: DB2INST1 DB2INST1 INDEX: DB2INST1
PRODY2 PERX1 STOREX1

©2015 IBM Corporation

Tip # 1: How to create the explain tables

+ Visual Explain tools create the explain tables automatically
* Use SYSINSTALLOBJECTS stored procedure:

CALL SYSPROC.SYSINSTALLOBJECTS
('EXPLAIN', 'C', CAST (NULL AS VARCEAR(128)), 'DB2USER')

OR

» Create the explain tables manually using EXPLAIN.DDL, found in the
sqllib/misc directory
db2 -tvf ~/sqllib/misc/EXPLAIN.DDL

* There are 10 explain tables
* 1addedin DB29.7 FP1

» DB2 inserts details of selected plan into the explain tables

« Various details about the explain tables and tools can be found in the
DB2 Information Center:

©2015 IBM Corporation

Explain Table Relationships

hese tables
. / always
Explain Instance Table populated
These tables are
not populated 3
WO CERY M Explain Statement Table —>| Explain Diagnostic
snapshotis
requested 3 v
Explain Diagnostic
Werator Table Data
|
 J \ !] S *
Explain Predicate Table Explain Stream Table Explain Argument Table
|
Explain Actuals . .
Explain Object Table
(DB2 9.7 FP1) pain L0

Used with explain-from-section

There are 10 explain tables, and 6 index advisor tables. This talk will not touch
upon the index advisor tables.

The Explain Instance table contains information about a grouping of explain
statements. This grouping is usually for static SQL statements that are part of
the same source file.

The Explain Statement table contains information about a specific statement.
There are 2 entries in this table for each SQL statement explain: the original
statement, and the planned statement. Associated with the planned statement,
is the rest of the Query Access Plan.

The Explain Operator table contains information about each of the operations
in the Query Access Plan.

The Explain Stream table describes how each of the operators are linked
together, and link to Explain Objects.

The Explain Objects tables describes all of the objects (indexes, tables, table
functions) used by the Query Access Plan

The Explain Predicate tables describes all of the predicates applied by a
particular Explain Operator.

The Explain Argument table describes additional arguments for the operator.
The Explain Diagnostic table contains diagnostic information about the
statement such as tables or indexes that are missing statistics or why an MQT
or statistical view wasn’t used.

The Explain Diagnostic Data table contains multiple rows for each diagnostic

message. These rows contain message tokens associated with the message.

The Explain Actuals table contains runtime actuals information. Currently, it contains
the actual number of rows processed by each operator in the EXPLAIN OPERATOR
table.

How is explain information collected?

» There are many different ways to collect explain information!
* This presentation will cover most of them
* There are many ways because SQL can be issued in different
contexts:
« Static, dynamic
+ Stored procedures, triggers and functions

* The most common methods:
+ Use the EXPLAIN statement:
EXPLAIN PLAN FOR SELECT .. FROM Tl, T2 WHERE..
+ Use the CURRENT EXPLAIN MODE special register
SET CURRENT EXPLAIN MODE EXPLAIN
SELECT .. FROM T1, T2 WHERE..
SET CURRENT EXPLAIN MODE NO

©2015 IBM Corporation

10

Tip #2: EXPLAIN statement or EXPLAIN MODE special
register?
» The EXPLAIN statementis useful if you want to uniquely identify each
instance of an explained statement:
EXPLAIN PLAN SET QUERYNO = 13 SET QUERYTAG = 'TEST13'
FOR SELECT .. FROM T1l, T2 WHERE..
« Values are stored in EXPLAIN_STATEMENT QUERYNO and QUERYTAG
columns

» The EXPLAIN MODE special register is useful when:
» You want to explain a set of SQL statements without changing each one:
SET CURRENT EXPLAIN MODE EXPLAIN
<stmt 1>
<stmt 2>
SET CURRENT EXPLAIN MODE NO

« Want to explain AND execute the statements
SET CURRENT EXPLAIN MODE YES

©2015 IBM Corporation

11

Tip # 3: Avoid db2expin or dynexpin

* These are tools that interpret the compiled version of the
statement (access section)

Contains less optimizer information about the query access plan

Insufficient details about why operations where chosen
* No selectivity estimates or estimated cardinality or costs per operator

» dynexpln is discontinued in DB2 10.1

©2015 IBM Corporation

12

Tip #4: How to explain a dynamic SQL statement after it
is prepared

Why would you want to do this?

+ Because explaining an SQL statement in the present, may not produce the
same access plan that was produced in the past.

* The optimizer considers many environmental factors such as catalog
statistics, the DB and DBM configuration and the compilation environment.

» These factors might've changed since the statement was prepared and
they might be hard to re-specify.

* Where might the prepared SQL statement exist?
« Dynamic statement cache
« System catalogs
« Activity event monitor table
* The prepared SQL statementis called an access section

» So the access section must be explained

© 2015 I1BM Corporation

13

Explain from Access Section

» Explain from access section? But didn’t you just say not to use
db2expln becauseitis based on the access section?

» Explain from access section looks at some additional information
that is included with the real access section.

* Itis also invoked as a stored procedure so it can be called via
SQL

©2015 IBM Corporation

14

Explain from Access Section

» 3 step process:
1. Obtain information identifying the location of the access section

2. Use this information to call a stored procedure to write explain
information to the explain tables
4 stored procedures, for different purposes
3. Use an explain table formatting tool to view the explain
db2exfmt
Visual Explain

* RequiresDB29.7 FP1

©2015 IBM Corporation

15

Explain from Access Section Example
» Explaining a statement from the dynamic statement cache
1. Locate the access section. Need the executableID .

SELECT SECTION TYPE, EXECUTABLE ID, VARCHAR(STMT TEXT, 200) AS TEXT
FROM TABLE(MON GET PKG CACHE STMT ('D', NULL, NULL, -2)) as T
WHERE T.NUM EXEC WITH METRICS <> 0 AND STMT_TYPE ID LIKE 'DML%'
GROUP BY SECTION TYPE, EXECUTABLE ID, VARCHAR(STMT TEXT, 200)

» An executable ID is an opaque binary token that uniquely identifies the SQL
statement section that was executed.
VARCHAR(32) FOR BIT DATA

2.Call a stored procedure to write the explain information to the explain

tables
CALL EXPLAIN FROM SECTION (
x'01000000000000005F0000000000000000000000020020101108135629359000', -- Executable
ID
™' -- Section is obtained from the package cache
NULL, -- Optional: package cache event monitor name
o, -- Member
NULL, -- Optional: explain table schema
2, "%, 8. 2.) -— Output arguments used to locate entry in explain

© 2015 I1BM Corporation

Explain from Access Section Example (continued)

* Output of EXPLAIN_FROM_SECTION call:

Value of output parameters

Parameter Name : EXPLAIN SCHEMA
Parameter Value : DB2DOCS

Parameter Name : EXPLAIN REQUESTER
Parameter Value : DB2DOCS

Parameter Name : EXPLAIN TIME
Parameter Value : 2014-11-08-13.57.52.984001

Parameter Name : SOURCE NAME
Parameter Value : SQLC2H21

Parameter Name : SOURCE SCHEMA
Parameter Value : NULLID

Parameter Name : SOURCE VERSION
Parameter Value :

* Format the explain information:
db2exfmt -d gsdb -e db2docs -w 2014-11-08-13.57.52.984001 -n SQLC2H21
-s NULLID -t -#0

/ 1 ©2015 IBM Corporation
.4 O(L1 -—%

Explain from Access Section — Alternative Method

» Faster method when many statements need to be explained

» Collect section separately — explain later
« Writing to the explain tables can be expensive
« Can collect sections from one DB and explain on another!

* Available in DB2 10.5 FP4

Method 1 Method 2

1) Locate the executable ID for the access 1) Locate the executable ID for the access

section section

2) Call EXPLAIN_FROM_SECTION towrite 2a) Call MON_GET_SECTION table function

explain information to explain tables to store access section in a user table (new
in 10.5 FP4)

2b) Call EXPLAIN_FROM_DATA to write
explain information to explain tables

3) Format explain table contents (db2exfmt 3) Format explain table contents (db2exfmt
or visual explain) or visual explain)

18 ©2015 IBM Corporation

“ ol LS -%

http://www-
01.ibm.com/support/knowledgecenter/SSEPGG _10.5.0/com.ibm.db2.luw.sql.rt

n.doc/doc/r0061346.html?cp=SSEPGG_10.5.0%2F3-6-1-3-10-48&lang=en

INSERT INTO REPOSITORY SECTIONS(STMT TEXT, STMTID,
PLANID, SEMANTIC ENV _ID, SECTION DATA) SELECT STMT TEXT,
STMTID, PLANID, SEMANTIC ENV _ID, (SELECT B.SECTION_ENV
FROM TABLE(MON_GET SECTION(A.EXECUTABLE ID)) AS B)
SECTION_DATA FROM

TABLE(MON GET PKG CACHE STMT(NULL,NULL,NULL,-2)) AS A

You can use this information to build a history of statements that ran. You can
use the EXPLAIN FROM DATA stored procedure to examine the access plan
for each saved statement by passing the saved section to the stored procedure.

18

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0061346.html?cp=SSEPGG_10.5.0/3-6-1-3-10-48&lang=en

Populating an access section repository

INSERT INTO REPOSITORY_ SECTIONS

(STMT_TEXT, STMTID, PLANID, SEMANTIC ENV_ID, SECTION_DATA)
SELECT STMT TEXT, STMTID, PLANID, SEMANTIC_ENV_ID,

(SELECT B.SECTION_ENV FROM TABLE (MON_GET SECTION(A.EXECUTABLE ID)) AS B)
SECTION_ DATA

FROM
TABLE (MON_GET_PKG_CACHE STMT
(NULL, -- section type (optional): ‘'S’:static, 'D”:dynamic
NULL, executable id (optional)
<modified within>5</modified within> -- search args (optional)
-2)) -- member
AS A

* Compare STMTID, PLANID and SEMANTIC_ENV_ID to determine if the access plan
is new
* More about this later!!

+ Use EXPLAIN_FROM_DATA to get the explain based in the access section contained
in SECTION_DATA

© 2015 I1BM Corporation

19

Tip #5: The best way to explain static SQL statements

* There are 2 main ways to explain static SQL:

1. Explain when the package is prepared or bound
* Must specify the EXPLAIN option on PREP or BIND command
+ YES = populate explain tables for static SQL at prepare/bind
+ ALL=sameas YES, exceptdynamic SQL is explained at runtime
+ ONLY = explain only, but don't create a package
+ But what if EXPLAIN wasn'’t specified?
+ What if you didn't know there was actually a package, like there is for triggers and
functions?

2. Explain based on the access section stored in the catalogs
+ Use EXPLAIN_FROM_CATALOG stored procedure
« Can get an explain after packages are bound, or triggers and functions are created

+ But there are a couple of gotchas:
* Need to determine the package name for functions and triggers
(See example in speaker notes and next page)
» Can only explain 1 section at a time
+ Awrapper procedure can solve these problems

©2015 IBM Corporation

Example query to retrieve parameters for EXPLAIN FROM_ CATALOG call:

select r.routineschema, r.routinename, d.bschema as pkgschema, d.bname as
pkgname, s.version as pkgversion, s.sectno

from SYSCAT.STATEMENTS AS S,
SYSCAT.ROUTINEDEP AS D,

SYSCAT.ROUTINES ASR

WHERE D.BTYPE =K' AND

R.SPECIFICNAME = D.ROUTINENAME AND
R.ROUTINESCHEMA = D.ROUTINESCHEMA AND
S.PKGSCHEMA = D.BSCHEMA AND

S.PKGNAME = D.BNAME AND

R.ROUTINENAME =

>>-EXPLAIN FROM CATALOG------ >

>--(--pkgschema--,--pkgname--,--pkgversion--,--sectno--,--explain_schema-->

>-- --explain_requester--,--explain_time--,--source _name--,--source_schema--

20

,--source_version--)-><

20

Example query to retrieve parameters for
EXPLAIN_FROM_CATALOG call:

select r.routineschema, r.routinename, d.bschema as pkgschema, d.bname as pkgname, s.version as

from SYSCAT.STATEMENTS AS S,
SYSCATROUTINEDEP AS D.

SYSCATROUTINES AS R

WHERE D.BTYPE ='K'AND

R.SPECIFICNAME =D.ROUTINENAME AND
R.ROUTINESCHEMA =D.ROUTINESCHEMA AND
S.PKGSCHEMA = D.BSCHEMA AND

S.PKGNAME =D.BNAME AND

R.ROUTINENAME = <YOUR ROUTINE NAME> ;

>>-EXPLAIN_FROM_CATALOG >

>--(--pkgschema-- --pkgname--.-- ——- --.--explain_schema-->

>-- --explain_requester--,--explain_time--,--source_name--,--source_schema--,--source_version--)-
><

! ©2015 IBM Corporation
.4 O(L1 .—%

21

Explain from Access Section Routines

* EXPLAIN_FROM_SECTION
+ Accesssectionresides in:
In-memory package cache
Package cache event monitor
+ |dentify by executable ID and location
« EXPLAIN_FROM_ACTIVITY
* Accesssectionresides inan activity event monitor table

Must specify COLLECTACTIVITY DATAWITH SECTION when defining workload
management objects (workload, service class, threshold, work action)

+ |dentify by application ID, activity ID, UOW ID, and activity event monitor name
« EXPLAIN_FROM_CATALOG

» Accesssections for static SQL

+ Identify by package name, package schema, unique ID, and section number
* EXPLAIN_FROM_DATA

+ Pass access sectiondirectly to procedure

» Point at access sectionin any arbitrary location
* All procedures:

* Acceptexplain schema as input

* Return explain table key as output

© 2015 I1BM Corporation

22

Explain from Access Section

« Activity event monitors
« Can be created for:
« workloads
+ service classes
+ thresholds
« work action

+ The Workload Management (WLM) feature is required to create these
DB objects

« Activity event monitors can be created for the default workloads and
service classes shipped with DB2

+ SYSDEFAULTUSERWORKLOAD
+ SYSDEFAULTUSERCLASS
+ SYSDEFAULTADMWORKLOAD
« But beware that ALL system activity will be monitored

© 2015 I1BM Corporation

Explain from Access Section

» Explain information is a subset of full explain

« Does not include all explain information in the section, to avoid
increasing package cache memory

* The mostimportantinformation is included
« All operators, predicate text, estimated cardinality, most operator
arguments
» Whatis missing:
* Only TOTAL_COST and FIRST_ROW_COST are included
« Stream column names
+ DB partition class columns
* Many statistics
« Implicitly (compiler) referenced objects

» But still WAY more information than db2explin

© 2015 I1BM Corporation

24

Tip #6: How to verify the optimizer's estimates?

* Why would you want to do this?

» Consider what the optimizer does:
» Models the execution of the access plan
- Estimates the number of rows produced by each plan operator

* Models the:
« CPU, I/O, and memory costs for each plan operator
+ Communications costs (in partitioned and federated environments)

« Selects the access plan with the cheapest cost

» The estimate of the number of rows (AKA: cardinality) is
in the estimated cost

« So it is the first thing to verify when examining a suspect access plan

© 2015 I1BM Corporation

25

Explain with Actual Cardinality

» Capture cardinality qumber of rows) processed by each access plan
operator at runtime

» Compare with the optimizer’s estimates to identify possible access
plan problems

» Estimated cardinality is most important input to cost model
» Use explain from access section mechanism

* Must use activity event monitor

» Use WLM, specify COLLECT ACTIVITY DATA WITH DETAILS,SECTION
+ For workload, service class, threshold, work action
* ALTER WORKLOAD WL1l COLLECT ACTIVITY DATA WITH DETAILS, SECTION

+ Alternatively, use WLM_SET_CONN_ENV stored procedure to enable
collection for the current connection (DB2 9.7 FP2)

* wlm set conn env(null, '<coll
</collectactdata><collectsectionactuals>base</collectsectionactuals>');

+ Use EXPLAIN_FROM_ACTIVITY stored procedure to populate explain
tables

ectactdata>with details, section

©2015 IBM Corporation

http://www-
01.ibm.com/support/knowledgecenter/SSEPGG 10.5.0/com.ibm.db2.luw.admin.perf.doc/do
¢/c0056362.html

http://www-
01.ibm.com/support/knowledgecenter/SSEPGG 10.5.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0
056929.html?cp=SSEPGG_10.5.0%2F3-6-1-3-18-16

Explain with Actual Cardinality

* How to make it work:
1. Enable a DB configuration parameter:
section_actuals [base | none]
2. Create activity event monitor
3. greate workload or use defaultworkload (to collect activity
ata)

+ Alternative: WLM_SET_CONN_ENYV for the current
connection

4. Activate activity event monitor
5. Execute SQL statement

6. Locate SQL statement information in event monitor table to pass to
EXPLAIN_FROM_ACTIVITY stored procedure

7. Call EXPLAIN_FROM_ACTIVITY
8. db2exfmt
* A simpler option:
db2caem -d <dbname> -st "SQL stmt"
» DB2 Capture Activity Event Monitor data tool

» Can also be requested using Optim Query Workload Tuner

2 3 © 2015 IBM Corporation

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0056362.html?lang=en

Setup:

Enable DB configuration parameter if section actuals collection is to be enabled for the entire database.

Alternatively, they can be enabled at the session level using WLM_SET CONN_ENV(). See steps further below.
DB2 UPDATE DATABASE CONFIGURATION USING SECTION_ACTUALS BASE;

Collection:

The easiest method is to use the db2caem tool:

db2caem -d <dbname> -st "SQL stmt"

Otherwise, these are the manual steps:

Create event monitor

CREATE EVENT MONITOR ACTEVMON FOR ACTIVITIES WRITE TO TABLE;

There are 2 methods to perform collection:

1) WLM setup:

Create workload or use default workload (to collect activity data)

2) Use WLM_SET CONN_ENV stored procedure for the current connection

call wim_set_conn_env(null, '<collectactdata>with details, section </collectactdata><collectsectionactuals>base</collectsectionactuals>");
Activate activity event monitor

SET EVENT MONITOR ACTEVMON STATE 1;

Execute SQL statement

Locate SQL statement information in event monitor table to pass to EXPLAIN FROM_ACTIVITY stored procedure:
SELECT APPL ID, UOW_ID, ACTIVITY_ID, STMT_TEXT FROM ACTIVITYSTMT_ACTEVMON;
-- APPL_ID UOW_ID ACTIVITY_ID STMT_TEXT

-- *N2.DB2INST1.0B5A12222841 1 1 SELECT * FROM ...
Populate the explain tables:

27

CALL EXPLAIN_FROM_ACTIVITY("*N2.DB2INST1.0B5A12222841', 1, 1,'ACTEVMON', ' MYSCHEMA', ?, 2,?,?,?7);

Format the explain tables as usual e.g. db2exfmt

27

Explain with Actual Cardinality
Rows
Rows Actual
RETURN
(1)
Cost
I/0
|
db2exfmt example 54
>~HSJOIN
(2)
153.056
NA
e \
54 20
>~HSJOIN TBSCAN
(3) « 12)
140.872 11.0302
NA NA
=== . \ |
54 3 20
396 0 NA
>*HSJOIN IXSCAN TABLE: SYSIBM
(4) (11) SYSAUDITPOLICIES
138.033 2.01136
NA NA
[mmmmmm Hmmmmm e \ [
54 6 -3
396 0 NA
>*HSJOIN IXSCAN INDEX: SYSIBM
(5) (10) INDCOLLATIONSO4

©2015 IBM Corporation

http://www-
01.ibm.com/support/knowledgecenter/SSEPGG 10.5.0/com.ibm.db2.luw.admin.perf.doc/do
¢/t0056414.html

Tip #7: How to see the relevant statistics for a particular
query

* Request the explain snapshot when collecting the explain
» A binary object containing statistics information
« Stored in EXPLAIN_STATEMENT.SNAPSHOT column (BLOB)

» Automatically formatted by db2exfmt or Visual Explain

» Contains ALL relevant statistics
Not all statistics are included in EXPLAIN_OBJECT table
SET CURRENT EXPLAIN MODE EXPLAIN
SET CURRENT EXPLAIN SNAPSHOT EXPLAIN
<SQL stmt>
OR
EXPLAIN PLAN WITH SNAPSHOT FOR <SQL stmt>

» You can also format the statistics yourself with
EXPLAIN_FORMAT_STATS scalar function

! ©2015 IBM Corporation
.4 O(L1 .—%

http://www-
01.ibm.com/support/knowledgecenter/SSEPGG 10.5.0/com.ibm.db2.luw.sql.rt
n.doc/doc/r0052902.html?cp=SSEPGG _10.5.0%2F3-6-1-3-8-1&lang=en

29

Collecting Relevant Statistics with Explain

* Why s this useful?
» Obvious reason:
« Helpful for understanding optimizer decisions
+ Non-obvious reason:
+ Statistics can change frequently due to automatic statistics collection

+ The statistics in the statistics cache could be more current than those in the system
catalogs!

* | recommend always collecting the explain snapshot
* Not available with explain from access section

©2015 IBM Corporation

http://www-
01.ibm.com/support/knowledgecenter/SSEPGG _10.5.0/com.ibm.db2.luw.admi

n.perf.doc/doc/c0011762.html?cp=SSEPGG_10.5.0%2F2-6-2-10-11-
1 &lang=en

Synchronous statistics collection does not store the statistics in the system
catalog. Instead, the statistics are stored in a statistics cache and are later
stored in the system catalog by an asynchronous operation. This storage
sequence avoids the memory usage and possible lock contention that are
involved in updating the system catalog. Statistics in the statistics cache are
available for subsequent SQL compilation requests.

30

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0011762.html?cp=SSEPGG_10.5.0/2-6-2-10-11-1&lang=en

Tip #8: How to determine if an access plan has changed

+ Straightforward approach is to compare the old and new explain table
information

« This is expensive, complex and some plan details don't have a significant
impact on performance

» Solution: Access plans are uniquely identified by a plan id
* New feature in 10.5 FP4

» The plan id is a 64-bit hash key based on important aspects of the
access plan

» Operator type, order, arguments, referenced objects
» Reported in explain output as a RETURN operator argument

PLANID : (Access plan identifier)
ad9%edacfccl7d2e4

! ©2015 IBM Corporation
.4 O(L1 .—%

http://www-
01.ibm.com/support/knowledgecenter/SSEPGG _10.5.0/com.ibm.db2.luw.admi

n.mon.doc/doc/r0061351.html?cp=SSEPGG_10.5.0&lang=en

The hash key value which identifies a query plan for a section.

The planid monitor element tracks important performance sensitive aspects of
the access plan. Such aspects include the list and layout of access plan
operators, identifiers of the objects that are being accessed, the number of each
type of predicate for each operator, and performance sensitive operator
arguments.

31

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.mon.doc/doc/r0061351.html?cp=SSEPGG_10.5.0&lang=en

Access Plan IDs

* PLANID is returned by some monitoring functions
¢ PLANID is included in activity event monitor tables
* ACTIVITYSTMT_<evmon_name>

* Allows tracking access plan changes for current and historical
execution

Table Function Name Description

© 2015 IBM Corporation

http://www-
01.ibm.com/support/knowledgecenter/SSEPGG 10.5.0/com.ibm.db2.luw.admi
n.mon.doc/doc/r0061351.html?cp=SSEPGG_10.5.0&lang=en

32

Comparing Access Plans using PLANID

* PLANIDs are only comparable for a particular SQL statement
executed in a particular semantic environment
» Semantic environment id (SEMANTIC_ENV_ID)

» Hash value computed over the default schema and function path
elements in the compilation environment

* Needed to distinguish statements with identical text but executed with
different schemas or function paths

» Statementid (STMTID)
+ Hash value computed over the normalized SQL statement text
« Following statements have the same STMTID
SELECT NAME FROM CUSTOMER WHERE ID = 111
SELECT NAME FROM CUSTOMER WHERE ID = 222

« Normalization uses the same approach as optimization guidelines inexact
statement text matching

» This means that there could be multiple PLANIDs for a given STMTID

©2015 IBM Corporation

http://www-
01.ibm.com/support/knowledgecenter/SSEPGG _10.5.0/com.ibm.db2.luw.admi

n.mon.doc/doc/r0061359.html?lang=en

Use the semantic environment ID with the query statement ID monitor element
(stmtid) to identify an SQL statement. The semantic compilation environment
ID is used to distinguish queries that have the same statement text, but are
semantically different because they reference different objects. For example,
the table that is referenced in the statement SELECT * FROM T1 depends on
the value of the default schema in the compilation environment. If two users
with different default schemas issued this statement, there would be two
entries for the statement in the package cache. The two entries would have the
same stmtid value, but would have different values for semantic_env_id.

Inexact statement matching rules:

http://www-
01.ibm.com/support/knowledgecenter/SSEPGG _10.5.0/com.ibm.db2.luw.admi
n.perf.doc/doc/c0059000.htm1?cp=SSEPGG_10.5.0&lang=en

33

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.mon.doc/doc/r0061359.html?lang=en

Comparing Access Plans using PLANID

« SEMANTIC_ENV_ID and STMTID are available wherever PLANID is

available
* Included in explain tables:
SEMEVID : (Semantic environment identifier)
0000000000000001
STMTID : (Normalized statement identifier)
fdc3021bec913ac9

* PLANID, STMTID and SEMANTIC_ENV_ID are stable across future
fixpaks and releases

* PLANID does not change if DB objects (tables, indexes, etc.) are
recreated with the same definition

« PLANID is based on the object name excluding schema
+ Allows comparing PLANIDs across different DBs where tables with the same
name exist in different schemas

» Useful for comparing access plans from a test and production system

PLANIDs should be compared for the 'same' SQL statement, executed within
the 'same' semantic or compilation environment. The semantic environment
includes the schema and function path. For example, the same SQL statement
could have different access plans if it were issued with different schemas,
because it references tables with the same names, but different defintions.
Monitoring and explain report a semantic environment id
(SEMANTIC_ENV _ID) for this purpose. So the 'key' for a unique instance of
an SQL statement is STMTID and SEMANTIC _ENV _ID.

The STMTID is a hash computed based on a normalized form of the original
SQL statement text that strips out literals e.g. "select name from customer
where id = 111" and ""select name from customer where id = 222" would have
the same STMTID. This means that a given STMTID could have multiple
PLANIDs associated with it, if the literals affected costing and plan selection.
One can further differentiate the statements for a given STMTID by comparing
the original SQL statement text. This approach allows the flexibility to track
statements based only on STMTID (and SEMANTIC ENV _ID) and PLANID,
to reduce the amount of data collected, for applications that don't use input
variables or statement concentration.

34

PLANID is based on DB object names excluding their schema. So the PLANID for
“SELECT C1 FROM T1” could be the same for different T1s in different schemas.
This is useful for comparing access plans when the T1s have the same definition but

are in different schemas. This approach also prevents PLANIDs from changing if DB
objects are recreated.

34

Comparing Access Plans using PLANID

» So tip #8 is really about how to avoid using explain "

» Explaining isn’'t necessary if the PLANID is the same
+ For the same STMTID and SEMANTIC_ENV_ID
» Even when access plans are captured using explain, only the
PLANIDs need to be compared
» Requires some SQL ‘pivoting’ to retrieve these IDs
» See speaker notes for an example

! ©2015 IBM Corporation
.4 O(L1 .—%

select es.explain time, varchar (statement text,100),
(select varchar(ea.argument value,20) as planid
from explain argument ea

where ea.argument type = 'PLANID' and
eo.operator id = ea.operator id and

es.explain requester = ea.explain requester and
es.explain time = ea.explain time),

(select varchar(ea.argument value,20) as stmtid
from explain argument ea

where ea.argument type = 'STMTID' and
eo.operator id = ea.operator id and

es.explain requester = ea.explain requester and
es.explain time = ea.explain time),

(select varchar (ea.argument value,20) as semantic env id
from explain argument ea

where ea.argument type = 'SEMEVID' and
eo.operator id = ea.operator id and

es.explain requester = ea.explain requester and
es.explain time = ea.explain time)

from explain statement es, explain operator eo

where
eo.operator type = 'RETURN' and
es.explain level = 'O' and

es.explain requester = eo.explain requester and

es.explain time = eo.explain time;

Tip #9: Explain Diagnostic Messages

» Explain can provide helpful information such as:

Notification about missing statistics

Information about whether or not materialized query tables (MQTSs) or
statistical views could be matched

Syntax errors when using optimization profiles
Index recommendations in limited contexts (for zig-zag join)
More will be added in future releases

©2015 IBM Corporation

36

Explain Diagnostic Messages

* 2 additional explain tables:
+ EXPLAIN_DIAGNOSTICS and EXPLAIN_DIAGNOSTICS_DATA

» Formatted message text appears in the db2exfmt output or visual
explain:
EXP0020W Table has no statistics. The table “DB2DBA”.”SALES” has not had

runstats run on it. This may result in a sub-optimal access plan and poor
performance.

EXPO060W The following materialized query table (MQT) or statistical view
was not eligible for query optimization: “DB2DBA".“SV_STORE". The MQT
cannot be used for query optimization because one or more tables, views or
subqueries specified in the MQT could not be found in the query that is
being explained.

EXP0147W The following statistical views may have been used by the
optimizer to estimate cardinalities: “DB2DBA".“SV_STORE".

EXP0256I Analysis of the query shows that the query might execute faster if
an additional index was created to enable zigzag join. Schema name:
“DB2DBA”. Table name: “SALES”. Column list:
“PERIODKEY , REGIONKEY , PRODUCTKEY” .

37) ©2015 IBM Corporation
X o .—%

Tip #10: Upgrading Explain Tables

* Sometimes new DB2 releases add new explain tables and/or explain
table columns

* Previous explain tables are always upward compatible
« But some new functionality is skipped if tables or columns are missing

» Solution — upgrade explain tables using:
+ db2exmig
+ OR
« SYSINSTALLOBJECTS stored procedure

CALL SYSPROC.SYSINSTALLOBJECTS ('EXPLAIN', 'M',
CAST (NULL AS VARCHAR (128)), -- Table space name. Table space of
existing
-- explain tables is always used.
CAST (NULL AS VARCHAR (128))) -- Optional schema. Default is SYSTOOLS.

© 2015 I1BM Corporation

http://www-
01.ibm.com/support/knowledgecenter/SSEPGG _10.5.0/com.ibm.db2.luw.gb.u

perade.doc/doc/t0007195.html?lang=en

38

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.qb.upgrade.doc/doc/t0007195.html?lang=en

Bonus tip: Why are my explain tables are getting big?

DB2 only inserts into the explain tables
* Allows more flexibility

But deleting everything is easy to do:
DELETE FROM EXPLAIN INSTANCE

Referential integrity is defined by default and
EXPLAIN_INSTANCE is at the top of the hierarchy

! ©2015 IBM Corporation
.4 O(L1 .—%

