IBM DB2 Encryption Offering

.

George Baklarz
WW Core Database Technical Sales

© 2015 I1BM Corporation

This presentation contains information on the new Encryption Technology (DB2 Native Encryption) that was
delivered in DB2 10.5 FP5. The material within this presentation was derived from the DB2 10.5 FP5 Skills
Transfer session that was developed by:

+ Mihai lacob
+ Geoffrey Ng
+ Hamdi Roumani
+ Greg Stager

Some of the speaker notes were derived from DB2 documentation and blog contents from Walid Rjaibi (CTO,
Guardium Data Security).

For questions or feedback regarding this presentation, please contact George Baklarz (baklarz@ca.ibm.com)
so that any corrections or changes can be made to the original charts.

*H#(~Js}0)MNzz$:p09-#4)(am
.

George Baklarz
WW Core Database Technical Sales

© 2015 I1BM Corporation

This presentation contains information on the new Encryption Technology (DB2 Native Encryption) that was
delivered in DB2 10.5 FP5. The material within this presentation was derived from the DB2 10.5 FP5 Skills
Transfer session that was developed by:

+ Mihai lacob
+ Geoffrey Ng
+ Hamdi Roumani
+ Greg Stager

Some of the speaker notes were derived from DB2 documentation and blog contents from Walid Rjaibi (CTO,
Guardium Data Security).

For questions or feedback regarding this presentation, please contact George Baklarz (baklarz@ca.ibm.com)
so that any corrections or changes can be made to the original charts.

Agenda

= Encryption overview
— Data encryption requirements
— Encryption keys, algorithms, and security strengths
— Encryption key management

IBM DB2 Encryption Offering
— Offering Overview
— Database Objects that are Encrypted

Key management
— GSKit Overview
— Keystore and key creation, deletion, reporting, exporting, and importing

Encrypting databases

Backup and restore

= Utilities, diagnostics and other considerations

3 © 2015 IBM Corporation

This presentation will cover four sections:

1)An overview of Encryption - Why the need for encryption (or why you really need encryption!)
2)The IBM DB2 Encryption Offering details

3)Key Management — How keystores are created and managed

4)Encrypting databases in DB2

5)Backup and Restore process with encrypted databases

6)Utilities, Diagnostics, and other considerations when using encryption

Encryption Overview

© 2015 IBM Corporation

This section will explore the reasons why encryption are important and what types of encryption technology
there are in the marketplace. Some terminology will also be introduced in this section so that the DB2
commands in the next section will be easier to understand.

Korea:
3 Acts for il
Data Privacy

Japan:
Hong Kong
Privacy Ordinance

Philippines:
Secrecy of Bank
Deposit Act

Australia Canada:
Poland: Federal Privacy Personal Information Protection
Polish Amendment Bil & Electronics Document Act
Constitution
China
Commercial

Protection
: Banking Law

Directive

: Co.
E-Commerce Law

SEC Board of S Brazil;
India Act ’ ’\. Constitution, Habeas Data &
~ M ode of Consumer Protection &

Indonesia: Defense

South Africa: Bank Sccrecy chile, \mtm
Promotion of Access Regulation 8 Argentina Protection 6F W ion -

to Information Act Habeas Data Act Personal Data Act

5 © 2015 IBM Corporation

Most people will agree that securing your data from theft and espionage are very important. However, there are
worldwide regulations in place that concern data security and it's the law in some countries that you must
adequately protect your data.

Companies span the globe and work with partners and colleagues around the world. Companies need to be
aware of global regulations. We can expect an increase in regulations going forward.

There are also voluntary compliance requirements such as PCI which are growing in importance.

Data Encryption Requirements

= Meet compliance requirements
— Industry standards such as PCI DSS
— Regulations such as HIPAA
— Corporate standards

* Protect against threats to online data
— Users accessing database data outside the scope of the DBMS

Protect against threats to offline data
— Theft or loss of physical media

* Reduce the cost of security and compliance
— No third-party add-on tools required
— Easy to consume by DBZ2 bundlers such as ISVs
— Runs wherever DB2 runs!

6 © 2015 IBM Corporation

Increasingly, businesses desire or are mandated to encrypt sensitive data to meet organizational or regulatory
requirements.

Some of the major governance regulations are
. PCI, Sarbanes-Oxley (SOX), HIPAA
. Data Breach Disclosure Laws, Gramm-Leach-Bliley, Basel Il

The DB2 Encryption Offering assists organizations to meet those requirements by providing, natively within the
IBM DB2 database engine itself, encryption capabilities that encrypt data at rest for the entire database,
including backup images. DB2's native encryption ensures that sensitive data is encrypted and secured at all
times. Deployment of DB2's native encryption is straightforward to enable, transparent to the applications
accessing the data, and is applied to backups as well. DB2's native encryption meets the requirements of NIST
SP 800-131 compliant cryptographic algorithms and utilizes FIPS 140-2 certified cryptographic libraries.

This offering is available on IBM DB2 Enterprise Server Edition, IBM DB2 Workgroup Server Edition, and IBM
DB2 Express® Server Edition for an additional charge. For those customer that already have DB2 Advanced
Enterprise Server Edition, and DB2 Advanced Workgroup Server Edition, this feature is included at no
additional charge. This feature is also included in the free DB2 Express Community Edition (Express-C) so that
developers can prototype the technology for future production use.

Encryption Key

» The sequence that controls the operation of the
cryptographic algorithm

* The number of bits in a key is called key length

* The length of the key reflects the difficulty to decrypt a plaintext
encrypted with that key

= A 256 bit key has 225¢ distinct values in its key space

Key Key

Encryption Encryption

7 © 2015 IBM Corporation

Plaintext Ciphertext Plaintext

The Encryption key is used to control the cryptographic algorithm that is used to "encrypt" and obfuscate the
contents of the data. Encryption keys have various lengths which go from 128 bits up to 256 bits. The number
of bits that are used are called the key length, and generally speaking, the larger the number of bits, the
stronger the encryption.

Encryption strength refers to the amount of effort or complexity required in order to "crack" the code. A 256 bit
key would require a huge number of computations in order to "brute force" find the key. It is estimated that even
a 128-bit key would take at least 30 years of compute power to guess.

The process of encrypting data is relatively simple — the data is encrypted with the key and then decrypted
using the same key. Unless the key is known, there is no way to decrypt the data. In fact, losing the key would
result in the data being lost because there is no method that can be used to recover the key.

Symmetric Encryption Algorithms

* A cryptographic algorithm that uses the same key for both encryption
and decryption

» AES and 3DES are the most famous symmetric
encryption algorithms

Encryption
(AN ﬁ =
i E/_‘
Original Message Secret Key Encrypted Message
Decryption
- -
Encrypted Message Secret Key Original Message

8 © 2015 IBM Corporation

Symmetric key algorithms use the same key for encrypting and decrypting the data. The most common
versions of symmetric encryption algorithms includes AES (Advanced Encryption Standard) and 3DES (Triple
DES, or Data Encryption Standard).

In cryptography, Triple DES (3DES) is the common name for the Triple Data Encryption Algorithm (TDEA or
Triple DEA) symmetric-key block cipher, which applies the Data Encryption Standard (DES) cipher algorithm
three times to each data block.

The Advanced Encryption Standard (AES) is a specification for the encryption of electronic data established by
the U.S. National Institute of Standards and Technology (NIST) in 2001. AES is the successor of DES as
standard symmetric encryption algorithm for US federal organizations. AES uses keys of 128, 192 or 256 bits,
although, 128 bit keys provide sufficient strength today.

Asymmetric Encryption Algorithms

= A cryptographic algorithm that uses one key for encryption and
another key for decryption
— The encryption key is called a public key
— The decryption key is called a private key
— The public key and private key are different but mathematically related

* It is not feasible to derive the private key from the public key in any
reasonable time

» RSA, ECC, and Diffie-Hellman are the most famous examples

Public Key Private Key
Encryption Encryption

Asymmetric Encryption Algorithms require a public/private key combination. The text is encrypted using a
public key, but the data can only be decrypted using a private key. The keys are mathematically related, but it
is virtually impossible to derive the private key because of the complexity involved.

Plaintext Ciphertext Plaintext

© 2015 IBM Corporation

The common forms of Asymmetric algorithms includes RSA, ECC, and Diffie-Hellman. Note that Asymmetric
Encryption is typically used for communication of emails, transactions, etc... on the internet. It tends to require

more processing power than Symmetric algorithms, so data at rest (i.e. databases) applications use Symmetric
algorithms.

128
192
256

1024
2048
3072
7680
15360

Approximate Equivalence in Security Strength

160
224
256
384
512

© 2015 IBM Corporation

Customer may ask about the strength of the encryption and the length of an encryption key. It is important to
know that the number of bits used is different for Symmetric versus Asymmetric algorithms. If someone states
that they require at least 3000 bits of key length then they are referring to an Asymmetric algorithm (RSA) not
AES. This charts compares the various encryption formats and their bit lengths. A 128-bit AES key is extremely
secure and may be sufficient for most customers. In any case, other key bit lengths are available, up to 256 bits

long. Note that 3DES is not shown on this slide. 3DES uses 168-bit keys for encryption.

10

Encryption Key Management

» Refers to the secure management of keys during their lifecycle
— Creation, distribution, expiration, deletion, backup, restore, etc.
— Protection of encryption keys including access control and encryption

» Two main approaches
— Public Key Cryptography Standard (PKCS) #12: A password-protected
keystore with a format for storing encryption keys (e.g., IBM Global Security Kit
(GSKit) PKCS#12 keystore)
— Enterprise key management systems: A dedicated server for centrally
managing encrypting keys across the enterprise (e.g., IBM Security Key
Lifecycle Manager (ISKLM))

» The keystore or enterprise key manager is where master keys are
typically stored

= DB2 10.5 currently supports a local keystore

11 © 2015 IBM Corporation

Encryption key management refers to the secure management of keys during their lifecycle. The key is a
critical part of any encryption environment and needs to be protected like any other object within the operating
environment.

Keys can be kept either locally (in a keystore), or in an enterprise key manager. For this release of DB2, the
keys are stored in a local keystore and the use of an enterprise key manager is not supported. The requirement
to place keys in an enterprise key manager is high on the priority list. However, this is not a guarantee that this
feature will be released at any time in the future.

11

Encryption Key Wrapping

» The process of encrypting one key with another key

* The key encrypting key is typically referred to as a master key

» The master key is typically stored separately from the data system
» The top drivers for this 2- tier encryption approach are:

— Security: Compromise of the data system does not mean compromise of the
data as the master key is stored outside the data system

— Performance: Complying with key rotation requirements does not mean re-
encrypting the actual data; only the data encryption key is re-encrypted with a
new master key

= DB2 Implements the industry standard 2-tier model
— Actual data is encrypted with a Data Encryption Key (DEK)
— DEK is encrypted with a Master Key (MK)

12 © 2015 IBM Corporation

Encryption key wrapping refers to the encrypting of one key with another key. The keystore contains a "master
key to the database. This master key is used to encrypt the key that is found within the database (database
encryption key). The database encryption key is what is used to encrypt the data within the database. The
reason for having this two-tiered approach is to improve the security of the system and improve the
performance of key rotation (which is described in a later slide).

DB2 makes use of the IBM Global Security Kit (GSKit) libraries to create, store, and manage the keys required
for encrypting databases. Key data (i.e. keys, certificates, and related information) are stored in a keystore, a
file stored in the operational environment. The initial release of DB2 Encryption implements the keystore
locally. The keys are managed used an industry standard 2-tier model:

*Actual data is encrypted with a Data Encryption Key (DEK)
*DEK is encrypted with a Master Key (MK)
*DEK is managed within the database while the MK is managed externally

12

Master Key and Data Key Relationships

A Keystore is created locally and has a strong password associated with it:

hﬁ 5 The keystore must be available to the DB2
o) & instance in order to get the Master Keys
Q:/:WM } ‘ " J‘ required for encryption and decryption.

| o

Keystore

Master Keys with Labels are created in order to encrypt database keys:

Key Label Key DB2 can generate Master Keys and
) Labels automatically for the user.
SECRET.DB2INST1.2015.02.01 - ‘
I + Creating your own labels will require
that you generate an encryption key.

Keystore

Database Keys are generated internally by DB2 and are used to encrypt the database:

Key Label Key
| SECRET.DB2INST1.2015.02.01 |

DB2 Key

The DB2 encryption key is itself
encrypted within the database image
by using the Master Key found within
the keystore.

13 © 2015 IBM Corporation

A keystore must be created locally (or accessible) so that the DB2 instance is able to access it. This keystore
will contain Master Keys. These master keys contain labels so that they can be easily referenced during create
database commands and other maintenance procedures.

You can create a master key manually, or have DB2 create them for you automatically. These Master Keys are
used to encrypt the Database key within DB2, not the actual data within the database.

When an encrypted database is created, DB2 will generate a random key internally. This key will be used to
encrypt the contents of the database. This key that was generated by DB2 is then itself encrypted with the
Master Key and stored within the database image itself. This means that if the database is removed from the
system (i.e. the keystore is not available), the database cannot be decrypted because it needs the master key
to decrypt the key that was used to encrypt the database. Someone would need access to the keystore and the
database in order to be able to decrypt it.

13

2-Tier Encryption Model

Password Protected Keystore

Stash File ‘T\\(Master Key and Label Pairs \

Obfuscated ||1mmmp [T
password By
or \‘/

User manual
input
Encrypted Database
(DB2 Key Included)
DB2 Key adm
e :
|l$§:ll~ T
1 -—"
Encrypted Included
DB2 Key

14 © 2015 IBM Corporation

This slide (created by Jennifer Chen) nicely summarizes the relationship between the keys used in DB2
Encryption.

14

IBM DB2 Encryption Offering
|

© 2015 IBM Corporation

IBM DB2 Encryption Offering is the official name of the encryption product. This section will discuss the product
and how a customer can implement encryption at a database level.

15

IBM DB2 Encryption Offering

Simple to deploy in cloud, software, or appliance

Encrypts online data and backups

Transparent @

Built-in secure and transparent key management w

Compliant, e.g.
— NIST SP 800-131 compliant cryptographic algorithms
— Uses FIPS 140-2 certified encryption

Runs wherever DB2 runs!
— All 64-bit platforms: AIX, HP-UX, Linux, pLinux, zLinux, Solaris, Windows
— Exploits available HW acceleration (AES encryption only)

+ Intel supported

* Power8 support coming soon

16 © 2015 I1BM Corporation

DB2 native encryption uses a symmetric encryption scheme for both the database and the backup images.
Two symmetric encryption algorithms are supported: AES and 3DES. Encryption is supported for all DB2
configurations including DPF and pureScale. Similarly, encryption is supported for all types of tables including
column organized tables (BLU Acceleration). The sections below cover the top 5 things you need to know
about DB2 native encryption.

*DB2 native encryption is transparent to your applications and schemas
*Key Management is secure and transparent

*DB2 native encryption encrypts both your online data and your backup imagesDB2 native encryption employs
certified and compliant cryptography, and exploits hardware acceleration for cryptographic operations.

*DB2 native encryption supports encrypting your existing DB2 databases

The Encryption feature is available on the following supported hardware platforms:
*AIX®, HP-UX, Linux 64 bit, Linux Power® System Big Endian

sLinux System z®, Inspur K-UX

*Solaris 64-bit SPARC, Solaris 64-bit Intel™ or AMD, Microsoft™ Windows 64 bit

The encryption feature is not available on any 32-bit platform.

16

IBM DB2 Encryption Offering Licensing

= AUSI, PVU, socket licensing options available

Licensing Metric EW AESE/AWSE/Express-C

Authorized User Single Install (AUSI) $222 $189
Processor Value Units (PVU) $87 $54 $21

Socket (WSE only) $6451 I n CI u d ed

Limited-Use Virtual Server $2326

= Notes:
* Prices illustrated are US dollars

« A Limited-Use Virtual Server is a physical server or a virtual server created by
partitioning the resources available to a physical server using an eligible
virtualization technology.

* Included in Express-C for development and prototyping purposes

17 © 2015 IBM Corporation

This offering is available on IBM DB2 Enterprise Server Edition, IBM DB2 Workgroup Server Edition, and IBM
DB2 Express® Server Edition for an additional charge. For those customer that already have DB2 Advanced
Enterprise Server Edition, and DB2 Advanced Workgroup Server Edition, this feature is included at no
additional charge. This feature is also included in the free DB2 Express Community Edition (Express-C) so that
developers can prototype the technology for future production use.

Note: Prices illustrated are US dollars only. Prices will vary by country and the feature may not be available in
all countries.

A LU Virtual Server is a physical server or a virtual server created by partitioning the resources available to a
physical server using an eligible virtualization technology.

17

Database Objects that are Encrypted

= All user data in a database is encrypted
— All table spaces (system defined and user defined)
— All types of data in a table space (LOB, XML, etc.)
— All transaction logs including logs in the archives
— All LOAD COPY data
— All LOAD staging files
— All dump .bin files
— All backup images

= Additional objects that are encrypted
— Encryption keys in memory, except for the time they are actually used
— Keystore passwords when transparently communicated from one member/
partition to another upon restart

18 © 2015 IBM Corporation

All data that DB2 creates that could have sensitive data in it will be encrypted. Note that in the event of a
database failure, some of the data may need to be decrypted for diagnostic purposes. If a customer loses their
keystore database (or password), IBM has no facility to retrieve the lost keys.

Note: Some control information within the database is not encrypted, but no user data is exposed. Any user
data will be encrypted by DB2.

Master Key Management

© 2015 IBM Corporation

IBM DB2 Encryption Offering is the official name of the encryption product. This section will discuss the product
and how a customer can implement encryption at a database level.

19

IBM Global Security Kit

» DB2 Encryption uses the IBM Global Security Kit for
key management
— This product is installed as part of DB2
— Located in the /sqllib/gskit directory
— The IBM Global Security Kit (GSKit) libraries are used to create, store, and
manage the keys required for encrypting databases
— Only 64 bit version of gskit command (gsk8capicmd 64)is available for use

= Three GSKit command options are used for manipulating keys
— keydb
+ Used to create a keystore for use by DB2
— secretkey
« Use for add master key labels to a keystore
— cert
+ Used for listing, deleting, importing, and exporting master key labels

20 © 2015 IBM Corporation

DB2 makes use of the IBM Global Security Kit (GSKit) libraries to create, store, and manage the keys required
for encrypting databases.

GSKit is a set of tools and C/C++ programming interfaces that can be used to add secure channels using the
TLS protocol to TCP/IP applications (products). It also provides the cryptographic functions, the protocol
implementation, and key generation and management functionality for encryption. GSKit ships only compiled
object code and header files. GSKit is only for IBM internal use and is not offered for sale as a standalone
product, i.e., it is designed for the use in other IBM products only.

Note: The routines that are used with the GSKit have been certified to conform to the FIPS security
specifications.

20

Creating a Keystore (keydb)

= A keystore must be created and registered before using encryption
— A keystore must be created using the gsk8capicmd command
gsk8capicmd 64 -keydb -create[-drop] -db -pw -strong -type -stash

= Parameters

-keydb Indicates that the command will apply to a keystore.
-create or -drop Create (or drop) a keystore.
-db Absolute location of the keystore. The keystore must be available to the DB2 instance.
-type Must be pkcs12.
-pw Password for the keystore (at least 14 characters long).
-strong Check that the password is non-trivial.
-stash Create a stash file to allow for commands to run without prompting for password.
= Example

— gskBcapicmd 64 -keydb -create -db ~/db2/dbZkeys.pl2
-type pkcslz
-pw "StrOngPasswlrd"
-strong -stash

21 © 2015 IBM Corporation

The GSKIt commands are used to create a PKCS#12-compliant keystore (a storage object for encryption
keys). Then the DB2 instance is updated with the location of the keystore and the keystore type and location.

The gsk8capicmd_64 command must be run prior to creating any DB2 databases that use encryption. The
keystore that is created must be accessible by the DB2 instance, otherwise none of the encrypted databases
can be opened for use.

The parameters listed in the slide are all required, except for the —stash keyword, which is discussed in the
next slide.

21

Stash File Considerations

» When the -stash option is specified during the create action, the

keystore password is stashed into a file with the following name:
— <key database name>.sth

= A stash file is used as an automatic way of providing a password
— When accessing a key database, DB2 will first check for the existence of a
stash file
— If a stash file exists, the contents of the file will be decrypted and used as input
for the password

= The stash file can only be read by the file owner
— Not stashing the password enhances security if the instance owner account
becomes compromised
— This additional security must be weighed against any requirements that the
DB2 instance can start without human intervention
— If the password is not stashed, you cannot access an encrypted database until
you provide the keystore password.

22 © 2015 IBM Corporation

The GSKit can also create a stash file during keystore creation. A stash file is used as an automatic way of
providing a password. When accessing a key database the system will first check for the existence of a stash
file. If one exists the contents of the file will be decrypted and used as input for the password. Otherwise, the
password will need to be supplied on db2 startup.

Some customers may want to modify db2start scripts to supply passwords rather than stash the password (i.e.
to prevent disk theft or loss)

PASSARG has two forms of supplying the password:

«fd:<file descriptor> where password has been written to open pipe
«filename:<filename> where the first line of the file contains the password

If you start a database without the open keystore parameter, any client wanting to connect to an encrypted
database will get a connection failure. You will need to issue the db2start command again with the proper
password for the keystore in order to have access opened up to the database.

22

Starting DB2 without a Stash File

= DB2 will start normally (no error condition returned) if a stash file is
not present in the system

= Applications connecting to encrypted databases will encounter an
error condition:

SQL1728N The command or operation failed because the keystore could not be
accessed. Reason code "3".

» The db2start command must be re-executed with the open
keystore option to enable access to encrypted databases

db2start open keystore USING KeyStOrePasswOrd
db2start open keystore PASSARG FILENAME:<value> | FD:<value>

= The keystore password can be stored in a file (FILENAME :), receive
input from a pipe (FD:), or be typed on the command line (USING)
—Using open keystore with no parameters will prompt the user for
the password on the console

23 © 2015 IBM Corporation

Some customers may want to modify db2start scripts to supply passwords rather than stash the password. If a
stash file is not available during DB2 start processing (and no passwords were provided for the keystore), DB2
will start normally, but the encrypted databases cannot be accessed.

In order to access these encrypted databases, the db2start command must be issued again, but with the
password for the stash file supplied using the open keystore USING... option.

PASSARG has two forms of supplying the password:
«fd:<file descriptor> where password has been written to open pipe
«filename:<filename> where the first line of the file contains the password

The customer will need to decide whether or not it is worth the risk of having a stashed keystore password, or
delaying the startup of a database due to system maintenance or a restart.

23

Creating Master Keys

» DB2 will generate master keys for you automatically during:
— Database Creation
— Key rotation
— Restoring into a new database

» DB2 master keys are always AES 256-bit
— This key is used to encrypt the database key, not the actual database

* You may want to create a key with a specific label for a number
of reasons:
— You want to keep track of the Master Key Labels and their corresponding keys
for offsite recovery without having the entire keystore available on the
backup site
— You have an HADR pair that must have synchronized keys

* The GSKit command (gsk8capicmd_64) is used to generate master
keys in the keystore

24 © 2015 IBM Corporation

DB2 can do all of the keystore management automatically, including the generation of master key labels. The
only customer requirement is to create the initial keystore.

Master keys are used to encrypt the database key. This is the two-level key wrapping that was mentioned
earlier in the presentation. DB2 generates a database key automatically (inside the database and invisible to
the user). This database key is used to encrypt the contents of the database. The database key is stored within
the database itself, but it must be encrypted first by the master key. And it is the master key that is stored in the
keystore.

If you do decide to create a master key label, you must create it using the gsk8capicmd_64 and generate the
appropriate encryption key (more on this later). There are a couple of situations that creating your own keys is
necessary:

*Using different keys for offsite recovery (where the keystore may not be available)
*Using HADR and having a different keystore at the secondary site

24

Registering the Keystore in DB2

= After creating a keystore file, the DB2 instance must be updated with
the location and type of keystore (SECADM only)

— Two new configuration parameters
* KEYSTORE TYPE — Type of keystore being used (either NULL or PKCS12)
+ KEYSTORE_LOCATION — Absolute location of the keystore (or NULL if none)

= A DB2 instance can only have one keystore
— The system could have keystores for other applications, but DB2 only supports
one keystore at the instance level

= Best practice is to update both parameters simultaneously
UPDATE DBM CFG USING
KEYSTORE_TYPE PKCS12
KEYSTORE_LOCATION "/home/db2instl/db2/db2keys.pl2"

= To remove a keystore from an instance, set the values to NONE

and NULL
UPDATE DBM CFG USING KEYSTORE_TYPE NONE KEYSTORE_LOCATION NULL

25 © 2015 IBM Corporation

DB2 needs to be made aware of the location and type of keystore that is being used for encryption. There are
two new instance parameters that will need to be updated before encryption can be used.

*keystore_type

The keystore type can be either NULL or PKCS12. NULL means that there is no keystore defined for this
instance, and no databases under this instance are encrypted.

PKCS12 specifies that the keystore type is PKCS #12. The value of the keystore_location configuration

parameter is used to configure the location of the keystore. You cannot set keystore_type to PKCS12 unless
the keystore_location database manager configuration parameter is set to a non-NULL file name.

*keystore_location
When this value is NULL it means that there is no keystore defined for this instance, and no databases under

this instance are encrypted. You can't set keystore_location to NULL unless the keystore_type database
manager configuration parameter is set to NULL.

Best practice is to set both parameters at the same time to avoid any errors.

25

Encrypting DB2 Databases

© 2015 IBM Corporation

This section will explain how DB2 databases can be encrypted and the options that are available to a user.

26

Encrypting Online Data

* Once the keystore has been created and registered, and (optional) a
master key created, you can encrypt a database

= Encryption can be requested via a new option on the CREATE
DATABASE command:

CREATE DATABASE mydb ENCRYPT;

» The default encryption is AES 256, but users can select other
algorithms and key lengths if they so desire

CREATE DATABASE mydb

ENCRYPT CIPHER AES KEY LENGTH 128;
CREATE DATABASE mydb

ENCRYPT CIPHER 3DES KEY LENGTH 168;
CREATE DATABASE mydb

ENCRYPT CIPHER AES KEY LENGTH 256

MASTER KEY LABEL mylabel;

27 © 2015 IBM Corporation

The CREATE DATABASE command has a number of options related to the level of encryption. Two types of
encryption ciphers are supported (AES, 3DES), along with a variety of key lengths. The full syntax is:

CREATE DATABASE <name> ENCRYPT
CIPHER [AES | 3DES]
KEY LENGTH [128 | 168 | 192 | 256]
MASTER KEY LABEL [label]

Here is the simplest version of the CREATE DATABASE command that will generate an encrypted database.

CREATE DATABASE SECRET ENCRYPT

There are no special requirements for users or applications to provide any keys to access the database. All of
the normal security features within DB2 would be used to restrict user access to tables and the types of
commands administers can issue.

If you supply a master key in the CREATE DATABASE command, the key must exist in the keystore; otherwise
DB2 will issue an error message and not create the database.

27

Encryption Options

» The ENCRYPT keyword has three options

— CIPHER
+ This is the type of encryption to use
+ AES (Advanced Encryption standard) or 3DES (Triple Data Encryption Standard)
+ AES is the default if CIPHER is not specified
+ AES is implemented in some hardware so potentially more efficient to use

— KEY LENGTH
+ For AES encryption this can be 128, 192, or 256 bits
« Default length is 256 for AES, and it can only be 168 for 3DES

— MASTER KEY LABEL
+ The name of the master key found within the keystore that will encrypt the database

encryption key

= A master key label is optional
— DB2 will generate a master key if one is not supplied on the CREATE DATABASE
command

— The name of the generated master key is:
DB2_SYSGEN_<instance> <database> <timestamp>

28 © 2015 IBM Corporation

Cipher

Cipher refers to the type of algorithm that will be used to encrypt the data in the database. DB2 supports two
encryption algorithms, AES and 3DES. Both forms of encryption use a symmetric-key algorithm, meaning the
same key is used for both encrypting and decrypting the data.

Key Length
The key length is dependent on which cipher you chose to use for the encryption. The options are:

*AES - 128, 192, 256
*3DES — 168
If you do not specify a key length, the default for AES is 256 and the key length can only be 168 for 3DES.

Master Key Label

When you create a database without a Master Key Label, DB2 will automatically generate one for you. The
encryption algorithm that is used for encrypting with the master key is always AES. If the master key is
automatically generated by the DB2 data server, it is always a 256-bit key. If a master key label is not specified,
the database manager automatically generates a master key and inserts it into the keystore file.

28

Determine Current Database Encryption Settings

* The SYSPROC.ADMIN GET ENCRYPTION INFO table function can be
used to determine the encryption settings for a database

OBJECT_NAME Indicates that the command will insert a new master key into an existing keystore
OBJECT_TYPE Type of object being encrypted
ALGORITHM Encryption algorithm used
ALGORITHM_MODE Encryption algorithm mode used
KEY_LENGTH Encryption key length
MASTER_LEY_LABEL Master key label associated with the master key used
KEYSTORE_NAME Absolute path of the keystore file location
KEYSTORE_TYPE Type of keystore
KEYSTORE_HOST Host name of the server where the keystore file is located
KEYSTORE_IP IP address of the server where the keystore file is located
KEYSTORE_IP_TYPE Type of the IP address of the keystore (IPV4 or IPVE)
PREVIOUS_MASTER_KEY_LABEL Master key label before the last master key rotation took place - If a master key rotation has not
occurred, this value is the master key label
= Example
SELECT MASTER KEY LABEL, ALGORITHM, KEY LENGTH FROM TABLE (ADMIN GET_ENCRYPTION_INFO())
MASTER KEY LABEL ALGORITHM KEY LENGTH
DB2_SYSGEN_dbZinstl_ SECRET 2015-02-09-06.26.40 AES 256
29 @ 2015 IBM Corporation

The built in table function SYSPROC.ADMIN_GET_ENCRYPTION_INFO() returns information regarding the
current encryption settings in the database, including the master key label.

The ADMIN_GET_ENCRYPTION_INFO() function returns the following information:

*OBJECT_NAME — Name of the object being encrypted.

*OBJECT_TYPE — Type of object being encrypted.

*ALGORITHM — Encryption algorithm used.

*ALGORITHM_MODE — Encryption algorithm mode used.

*KEY_LENGTH — Encryption key length.

*MASTER_KEY_LABEL — Master key label associated with the master key used.
*KEYSTORE_NAME — Absolute path of the keystore file location.
*KEYSTORE_TYPE — Type of keystore.

*KEYSTORE_HOST — Host name of the server where the keystore file is located.
*KEYSTORE_IP — IP address of the server where the keystore file is located.
*KEYSTORE_IP_TYPE — Type of the IP address of the keystore (IPV4 or IPV6).

*PREVIOUS_MASTER_KEY_LABEL — Master key label before the last master key rotation took place. If a
master key rotation has not occurred, this value is the master key label

29

Key Rotation

» The process of changing encryption keys for compliance purposes
— It requires decrypting any key encrypted with the old key and then re-
encrypting it with the new key
— The data does not get re-encrypted!

* The key rotation frequency depends on the compliance driver
— This generally ranges from once every 3 months to once per year

= The key rotation requirement can be thought of as analogous to the
requirement to change passwords every 90 days

Key Label Master Key DB2 Key Key Label Master Key DB2 Key

| SECRETDB2INST1.2015.02.01 |[7] = [sECRETDB2INST1.2015.03.05 | 7] S []

The current Master Key is used to l
to decrypt the DB2 encryption key .
e

30 © 2015 IBM Corporation

Now a new Master Key is used to
encrypt the DB2 encryption key

Key rotation refers to the changing of encryption keys for compliance purposes. This is very similar to changing
a password every 90 days.

Key rotation is done WITHIN the database. The process is as follows.

*The master key for the database is used to decrypt the database key (this is done when the database is
started)

*A new master key is generated for the database
*This new master key is used to encrypt the database key

The database encryption key is never changed. If you did change the database encryption key, you would have
to re-encrypt the entire database. Instead, only the key that encrypts the database is re-encrypted. This avoids
having to re-encrypt the entire database.

30

Key Rotation Procedure

* The SYSPROC.ADMIN ROTATE MASTER KEY procedure can be used

to change the database key to comply with key rotation requirement
— You must be connected to the database to run this command
CALL SYSPROC .ADMIN_ROTATE_M‘ASTER_KEY (' newMasterKeyLabel ")

* The SYSPROC.ADMIN ROTATE MASTER_KEY procedure re-encrypts
the database key with the new master key

= DB2 will automatically generate the new master key unless you
override it with a key label

= Key rotation is logged in the db2diag.log file:

grep -A 3 "Key Rotation" ~/sqllib/db2dump/db2diag.log

Key Rotation successful using label:
DATA #2 : String, 46 bytes
DB2_ SYSGEN_db2instl_SECRET_2015-02-09-05.03.12

31 © 2015 IBM Corporation

DB2 native encryption allows you to rotate your database MK to comply with your corporate security policies.
You rotate your database MK by calling the new ADMIN_ROTATE_MASTER_KEY procedure.

The procedure decrypts your database DEK with the old MK and then re-encrypts it with the new MK. You have
2 options when calling the ADMIN_ROTATE_MASTER_KEY procedure. You can either provide a label for the
desired new MK or use the default. When using the default, DB2 automatically generates a new master key
and adds it to the keystore on your behalf. Then, it rotates the current database MK to this newly generated
MK.

The ADMIN_GET_ENCRYPTION_INFO function can be used to get information about the encryption used for
the current database.

31

Backup and Restore Using Encryption
| N

© 2015 IBM Corporation

This section will describe the backup and restore considerations when using encryption.

32

Backup Encryption Settings

» Two database parameters can be used to automatically control the

encryption of backups
— ENCRLIB — Which encryption library to use
— ENCROPTS — What options to pass to the encryption routine

= ENCRLIB is set to one of the following values (full path required)
(OperatingSystem Compression Eneyption Both

Windows db2compr.dll db2encr.dll db2compr_encr.dlil
Linux libdb2compr.so libdb2encr.so libdb2compr_encr.so
AIX libdb2compr.a libdb2encr.a libdb2compr_encr.a

» ENCROPTS is a string with the following optional values
— Each option is separated by a colon (:) in the string (Cipher=AES:Length=256)

Cipher Type of encryption algorithm to use AES, 3DES
Length Length of the encryption key AES: 128, 192, 256 3DES: 168
Master Key Label Optional name of the Master Key Label used to encrypt the String
database key
33 © 2015 IBM Corporation

The encryption for backup images is independent of online database encryption. That is, you can choose to
encrypt your backup images even if your online database is not encrypted. You can request an encrypted
backup image by explicitly specifying the ENCRYPT option of the BACKUP DATABASE command.

Alternatively, you can enforce and automate backup images encryption by configuring the new ENCRLIB and
ENCROPTS database configuration parameters.

This chart lists the names of the libraries that are used compression, encryption, and a combination of
encryption and compression. If you are setting the ENCRLIB database parameter, you must specify the
absolute file name of the encryption library (/home/db2inst1/sqllib/lib/libdb2encr.so) rather than just the library
name. On the backup command, you normally only need to supply the library name (libdb2encr.so).

33

Backup Encryption Settings for Encrypted Databases

* ENCRLIB and ENCOPTS are automatically set when a new database
is created with encryption
— Both values are set according to the ENCRYPT options that were used at
database creation time
— Any database backup will be encrypted automatically with these setting
— No requirement for additional encryption keywords on the BACKUP command
— Only a SECADM can override the database encryption parameters

= Overriding the backup encryption level requires that SECADM update
the ENCROPTS settings

— A database backup can have a different level of encryption than the
database itself

— The ENCROPTS can also be set manually on the BACKUP command but that
would require that the database ENCROPTS parameter be set to NULL

— Supplying no ENCROPTS on the BACKUP would result in default encryption
settings (AES 256)

— Setting ENCRLIB to NULL and ENCROPTS to NULL will allow the DBA to backup
the database with NO ENCRYPTION

34 © 2015 IBM Corporation

When you create an encrypted database, the encrlib and encropts database configuration parameters are set
such that subsequent database backup operations use the native DB2 encryption library with options that were
specified at database creation time.

The encryption for backup images is independent of online database encryption. That is, you can choose to
encrypt your backup images even if your online database is not encrypted. You can request an encrypted
backup image by explicitly specifying the ENCRYPT option of the BACKUP DATABASE command.
Alternatively, you can enforce and automate backup images encryption by configuring the new ENCRLIB and
ENCROPTS database configuration parameters.

Notes:

If you do not want to backup the database with encryption, you need to remove the ENCRLIB and ENCROPTS
settings. Only a SECADM is authorized to update the ENCRLIB/ENCROPTS settings on a database.

34

Backup Encryption Settings for Normal Databases

ENCRLIB and ENCROPTS can be set to for databases that have no
encryption settings
— Set the values according to the ENCRLIB and ENCROPTS options that you want
for the database
— Once these parameters are set by the SECADM, they "lock in" the encryption
of the backup
— The backup options cannot be overridden on the BACKUP command unless
ENCROPTS is null (for encryption options) or ENCRYPT is null for no encryption

Setting ENCRLIB/ENCROPTS at the database level ensures that
backups will always be encrypted
— DBAs can run the BACKUP command with no additional options required
for encryption

Example:
BACKUP DATABASE SECRET TO /HOME/DB2INST1/DB2
ENCRYPT ENCRLIB 'libdb2encr.so’
ENCROPTS 'Cipher=AES:Key Length=256'

35 © 2015 IBM Corporation

For normal databases (with no encryption set), you can make use of the ENCRLIB and ENCROPTS
parameters on the backup command. This gives you the option of having the backups encrypted for offsite
storage. When you create a standard database, both of these parameters are set to null.

You can request an encrypted backup image by explicitly specifying the ENCRYPT/ENCRLIB option of the
BACKUP DATABASE command.

35

Restoring Encrypted Backup to an Existing Database

= Restoring a backup by replacing an existing database requires no
special parameters
— Keystore must contain the master key label that was used to generate this
backup copy
— Standard databases with an encrypted backup would restore back to an

unencrypted copy
RESTORE DATABASE SECRET FROM /home/db2instl/db2

= RESTORE will use the existing database encryption settings to
encrypt the data being restored
— The ENCROPTS database parameter is populated with the encryption settings
when the database is first created

36 © 2015 IBM Corporation

Restoring an encrypted backup on top of an existing database requires no additional parameters. The existing
encryption settings of the database will be used as the data is being restored.

36

Restoring Encrypted Backup to a New Database

» Restoring a backup to a new copy of the database requires that the
ENCRYPT parameter be added to the command
— DB2 needs to create the database before restoring the encrypted copy, and
without the ENCRYPT keyword, the database would not be secure
— Parameters for the ENCRYPT keyword are identical to creating an
encrypted database
RESTORE DATABASE SECRET FROM /home/db2instl/db2
ENCRYPT
CIPHER AES
KEY LENGTH 128
MASTER KEY LABEL secret.key

* Encryption settings can be different from the backup copy settings
— The parameters used with the ENCRYPT option can specify a different cipher,
key length, or master key label
— If you need to duplicate the exact encryption settings, use the show master
key details option of the RESTORE command
— Use NO ENCRYPT if you want encryption removed

37 © 2015 IBM Corporation

What happens during the RESTORE process is that the database is created first, and then the contents of the
backup are placed into the new database. Unless you specify the encryption options, the new database is
created without appropriate encryption and the restore of the backup image will fail.

To fix this, we need to add the encryption options to the command. These are exactly the same parameters as
found on the CREATE DATABASE command:

*Encrypt — Required keyword
*Cipher - AES or 3DES

*Key Length - 128, 168, 192, 256
*Master Key Label

Adding these options to the RESTORE command will allow the recovery to proceed. The encryption options on
restore can also be different than what the database was originally backed up with.

37

Determining the Backup Encryption Settings

= When restoring a backup as a new database, the database will need
to be created with encryption enabled
— You can chose to change the cipher, key length, and master key label settings
— There is an option to query the encryption settings of the backup image

*» The RESTORE command can extract the backup encryption settings
— The RESTORE command with the show master key details option will
prompt the user if they want to overwrite an existing copy of the database
— Accepting the overwrite will NOT overwrite the database
RESTORE DATABASE SECRET FROM /home/db2instl/db2
ENCRLIB 'libdbZencr.so'
ENCROPTS 'show master key details'

= Encryption information from the backup will be placed into the
db2dump directory

— File with the following name will be generated
<DATABASE>.#.<instance>.<partition>.<timestamp>.masterkeydetails

— You can then use ENCROPTS 'Master Key Label=xxx' option on the
RESTORE command to decrypt the backup with the proper master key

38 © 2015 IBM Corporation

If you are unsure of what settings were used when a backup was created, you can use the 'show master key
details' option in the ENCRLIB setting to dump the information into a file.

Then the restore command runs it will prompt the user on whether or not the existing database should be
overwritten. This does NOT happen during the restore process. So while the message seems to imply that the
database will be replaced, it is not.

A file will be generated in the db2dump directory with the format:
<DATABASE>.#.<instance>.<partition>.<timestamp>.masterkeydetails

The contents of the file will contain detailed information on the encryption settings of the backup.

KeyStore Type: PKCS12

KeyStore Location: /home/db2instl/db2/db2keys.pl2

KeyStore Host Name: localhost.localdomain

KeyStore IP Address: 127.0.0.1

KeyStore IP Address Type: IPV4

Encryption Algorithm: AES

Encryption Algorithm Mode: CBC

Encryption Key Length: 256

Master Key Label: DB2 SYSGEN db2instl SECRET 2015-02-09-04.28.34[d

38

Restoring an Encrypted Backup to a Different Server

Create the database and do a backup
CREATE DATABASE SECRET ENCRYPT
BACKUP DATABASE SECRET TO /primary

Extract the Master Key Label for the keystore

gsk8capicmd -cert —export —-db ~/db2/primary.pl2 —-stashed
-label secret.key —-target secret.pl2
-target type pkecsl2 -target pw StrOngPasswOrd

Copy the master key to the backup site and add the key to the
backup site keystore
gsk8capicmd -cert -import -db secret.pl2 -pw StrOngPasswOrd
-stashed -label secret.key
-target ~/db2/backup.pl2
-target type pkcsl2

Restore the database
RESTORE DATABASE SECRET FROM /backup

39 © 2015 IBM Corporation

DB2 relies on the keystore file and stash file to get access to the key required to decrypt the database. When
you move a backup copy to another server, you may have a different keystore with different master keys.

You have a couple of options on how a backup image can be restored. One is to export the master key from
the original keystore (with the gsk8capicmd_64 -cert -export command). The key that is exported can then be
imported into the keystore on the second system. You may also have the keyfile that you created when
generating the master key. If so, you could just take that file and recreate the key at the second site.

The other option is to make the entire keystore available on the second server, but this would mean replacing
the contents of the file at the second site. This would not be practical if there were production systems running
there.

Finally, you can use the following technigue to move a backup to another server:
*Create a new master key label to be used for the backup: label4systemb

*Extract the key from the keystore on system A, securely copy it to system B, import it into the keystore on
system B.

*Take the encrypted backup and specify 'master key label=label4systemb' via encropts
*Copy the encrypted backup to system B
*Restore the encrypted backup on system B

You will note the importance of the keystore file. It is critical that the keystore be frequently backed up and
stored in a safe place. In addition, this file needs to be accessed only by the instance owner, and no one else.

39

Backup Encryption Summary

» The following chart summarizes the combination of settings of
ENCRLIB and ENCROPTS that result in encrypted backups
— If ENCRLIB is set, backups will always be encrypted
— DBAs can only override the level of backup encryption if ENCROPTS is
set to NULL
— A backup will be decrypted when ENCRLIB and ENCROPTS are NULL

Database ENCRLIB Set | ENCROPTS

Encrypted

DBA can Override | Backup Default

ENCROPTS R

v v v x Encrypted encrypted
databases

v v x v Encrypted

v ® ® v None

t 3 v v ® Encrypted

sl v * v Encrypeed Default for

x td ® v None standard
databases

40 © 2015 IBM Corporation

This slide summarizes the types of backup you can perform on encrypted and normal databases. Note that if
ENCRLIB and ENCROPTS are set, there is no way for a DBA to override the settings.

If ENCROPTS is not set, the backup will always be encrypted, but the DBA can specify the encryption level, the
cipher used, and the master key label.

40

Utilities, Diagnostics and
Special Considerations

© 2015 IBM Corporation

This section discusses some of the miscellaneous items associated with encryption.

41

Tooling Changes

» Tools with encryption support
— dbZpdlog
— db2fmtlog
— db2cklog
— db2flsn
— db2LogsForRfwd
— db2UncompressLog
— db2ckbkp
— db2adutl
— db2dart

= These tools will use the keystore specified in the DBM CFG
KEYSTORE_LOCATION parameter
— Additional arguments used to connect to the keystore if the password is
not stashed
-kspassword password
~kspassarg fd:file descriptor
filename:file name
-ksprompt

42 © 2015 IBM Corporation

A number of DB2 tools have been modified to support encrypted databases. The utilities will always look for the
keystore based on the KEYSTORE_LOCATION parameter that was set at the instance level. There is no other
way to specify the keystore location.

The additional arguments that are added to these utilities includes the ability to supply the keystore password in
either a file, a named pipe, or by prompting on the command line.

There are three utilities which do not support encryption.
» db2pxlog

+ db2PatchLog

+ db2logscan

The following products do not support encryption at this time

* Recovery Expert
+ Shadow tables [encryption is supported, but the data that is staged will be decrypted]

The recovery expert does support encryption yet.

42

1DB2DIAG Log

* The db2diag.log will contain additional information on the errors that
occurred during any of the encryption commands

2015-02-11-09.46.53.068475-300 E1265451E1280 LEVEL: Error
PID 1 4527 TID : 139971511969536 PROC : db2sysc 0
INSTANCE: db2instl NODE : 000 DB : SECRET
APPHDL : 0-169 APPID: *LOCAL.db2instl.150211144653
AUTHID : DB2INST1 HOSTNAME: localhost.localdomain

EDUID : 1767 EDUNAME: db2agent (SECRET) 0

FUNCTION: DB2 UDB, database utilities, sqludValidateUserOptionsAgainstMediaHeader, probe:789
MESSAGE : ZRC=0xFFFFF931=-1743

SQL1743N The RESTORE failed b the datab in the
backup image is encrypted but the existing database on disk is not
encrypted.

DATA #1 : String, 558 bytes
The database contained in the backup image is encrypted but existing database on disk is not. If this was
intentional re-execute the command with the 'no encrypt' option. If this was not intended and you are
restoring into a new database, supply the desired encryption options to the restore API. If this is a pre-
existing database, the encryption options can not be changed and you must either use a different backup
image,
restore into a a different database, or drop the existing database and then re-issue the restore with the
desired encryption options.

= Key Rotations are also found in the db2diag.log

Key Rotation successful using label:
DATA #2 : String, 46 bytes
DB2_SYSGEN db2instl SECRET_2015-02-09-05.03.12

43 © 2015 IBM Corporation

The db2diag log is a source of information on errors that might occur when using encryption. Aside from
figuring out what errors you have with the encryption, you can also get information on key rotations that took
place within the database.

43

DB2 Native Encryption vs. Guardium Data Encryption

= Database managed encryption = Enterprise managed encryption
— Management by DBA/Application Teams — Heterogeneous Database, Application and
— Cloud database encryption Filesystem Encryption
— Encrypts databases and backup images, and
optionally compresses backups . Managed by Enterprise

o Security Team
= Simplified DBA deployment

= Comparable option to SAP
HANA/Oracle/MS SQL

InfoSphere Guardium Data
Encryption centralizes encryption

1BM DB2 Encryption Option

Decision based on
who is the buyer and
Manager of the
system/project

Native Encryption on all platforms
for BLU, pureScale, DPF and
Single Instance DB2
Only option for pureScale
on Linux

Supports pureScale on AlX only

44 © 2015 IBM Corporation

In addition to the DB2 Native Encryption option, customers can also purchase the InfoSphere Guardium Data
Encryption product. This product encompasses more than just the database files as illustrated in the following
diagram.

InfoSphere Guardium Data Encryption appeals to Enterprise Security teams who want to manage
heterogeneous databases along with application and file system files.

The DB2 Native Encryption option is targeted at DBA and Application teams who want to encrypt databases
and backup images. The technology is easy to implement and can be deployed at the application layer, rather
than requiring everything to be encrypted. This technology is also well suited for Cloud deployments.

From a technology perspective, InfoSphere Guardium supports all DB2 platforms, except for the DB2
pureScale feature, which can only be encrypted on the AIX platform. The DB2 Native Encryption supports
pureScale on Linux as well as AlX. In addition, the IBM DB2 Encryption option supports encryption and
compression on backup, while the IGDE product does not support compression on an encrypted backup.

44

Migration of Existing Data
» Take a standard non encrypted backup of the database

» Restore the backup using the newly added ENCRYPT clause to enable
the desired encryption settings

RESTORE DATABASE SECRET FROM /home/dbZinstl
ENCRYPT
CIPHER AES
KEY LENGTH 192
MASTER KEY LABEL secret.key

45 © 2015 IBM Corporation

It is possible to convert an existing unencrypted database into an encrypted database. The approach is as
follows:

*First, you take a backup of your existing database using the BACKUP DATABASE command.

*Then, restore that backup image into a new database using the RESTORE DATABASE command. When
invoking the RESTORE DATABASE command, you specify the new ENCRYPT option. This new option mirrors
exactly the ENCRYPT option of the CREATE DATABASE command. That is, the default is that your new
database will be encrypted using AES 256, but you can choose different algorithms and key sizes if so desired.

There is no utility that will allow you to encrypt a database in place. For this reason, a customer will have to do
some planning to allow for a sufficient amount of time to do a full database restore.

45

Database Encryption Summary

= Database encryption requirements
— Configure the keystore for the instance (one-time set-up)
— Optionally create a master key label and add to the keystore
— Specify encryption when creating a database
— Specify encryption when taking a backup (default for encrypted databases)
— Specify encryption when restoring a backup

= Database encryption operational management
— Regular backup and safe storage of the of the keystore
— Rotate the database master key as dictated by the compliance requirements
— If password protection of the keystore was selected, manage the password
carefully including changes as dictated by the compliance requirements

The customer is responsible for
backing up the keystore!

46 © 2015 IBM Corporation

This slide explains the steps that are required to implement encryption and the responsibilities that a customer
has to manage their keystore database.

The most important point is that the customer is responsible for backing up the keystore! If you lose the
keystore you loose access to your databases!

46

IBM DB2 Encryption Offering
Additional Slides

|

Thank-you!

47

Master Key Management
Additional Slides

© 2015 IBM Corporation

IBM DB2 Encryption Offering is the official name of the encryption product. This section will discuss the product
and how a customer can implement encryption at a database level.

48

Creating a Master Key Label

= A keystore must be created before adding a Master Key Label
— Also require write access to the keystore
— The gsk8capicmd is used to create a new master key
gsk8capicmd 64 -secretkey —add -db -label -file -stashed

= Parameters

-secretkey Indicates that the command will insert a new master key into an existing keystore
-add Add a keystore (Note: You can't drop a key using this command)
-db Absolute location of the keystore
-label Name of the master label (text string)
-pw Password for the keystore if the stash file is not available
-file Lacation of the AES key that will be used to encrypt the database key
-stashed Use the stashed password to access the keystore
= Example

gskBcapicmd 64 -secretkey -add -db ~/db2/dbZkeys.pl2
-label secret.key
-stashed
-file ~/db2/mysecretkey

49 © 2015 IBM Corporation

Creating a master key label involves the use of the gsk8capicmd_64 and the —secretkey —add option. The
command needs to know the location of the keystore for the database, the password (if it is not stashed), the
name (label) of your secret key, and a file that contains the secret key.

The next slide explains the contents of the file.

49

Generating an AES Key for a Master Key Label

= A secret key needs to be generated by the user before adding a
master key to the keystore

— The secret key is used to encrypt the database key

— The strength of the secret key has no relationship to the actual encryption that
takes place within the database

— Recommendation is to use the highest level of AES encryption (256) for the
database key (same as DB2)

« Overhead is insignificant since the database key is not frequently decrypted

= Generating a random key
— A key needs to be 16, 24, or 32 bytes wide
+ Corresponds to 128, 192, or 256-bit AES keys
— On Linux, UNIX, and AlX use the following command to generate a 32-byte

random string (which represents a 256-bit AES key)
head -c 32 /dev/random >~/db2/mysecretfile

50 © 2015 IBM Corporation

The secret key that you generate for your master key label must be either 16, 24, or 32 bytes long. This key is
used to encrypt the database key (which subsequently encrypts the actual database contents).

You could edit a file directly an place exactly 32 characters in it (16=128 bits, 24=192 bits, 32=256 bits). Rather
than relying on readable characters, the head —c 32 /dev/random command in Linux could be used to generate
a random string of characters to use as input for the key.

The key file that you generate is then used with the —secretkey —add option to be placed into the keystore.

50

Delete or List Master Key Labels

* You can delete a master key or query the contents of a keystore by

using the cert option of the GSKit command
gskB8capicmd 64 —cert [-list]|-delete]

= Parameters

-db Absolute location of the keystore
-stashed Use the stashed password to access the keystore
-pw Password for the keystore if the stash file is not available
-delete -label Name of the master key label (text string)
-list List all of the master keys in the keystore
= Examples

gsk8capicmd 64 -cert -list -db ~/db2/db2keys.pl2 -stashed

gsk8capicmd 64 -cert -delete —db ~/db2/db2keys.pl2 -stashed
-label secret.key

51 © 2015 IBM Corporation

While not recommended, you could delete a master key label by using the —cert —delete option of the
gsk8capicmd_64 command. One of the reasons you want to keep master keys around is that you may have
done a backup some time in the past, and unless you have kept the specific master key for that backup, you
will not be able to restore it.

The —list command is used to extract the names of the certificates (master key labels) that are within the
keystore.

Note that the user must have access to the stash file or the password for the keystore in order to issue these
commands.

51

Exporting a Master Key Label

= A secure method of moving a key (to import to another keystore)

involves the use of the cert option of the GSKit command
gskB8capicmd 64 —cert -export -db —-label —-target -target_pw

= Parameters

-export Tells the command to export a master key into a file
-db Absolute location of the keystore
-stashed Use the stashed password to access the keystore
-pw Password for the keystore if the stash file is not available
-label Name of the master key label (text string)
-target Name of the file to place the contents of the keystore into
-target_pw Password used to encrypt this file
-target_type Type of file (pkcs12)
= Example

gsk8capicmd 64 -cert -export -db ~/db2/db2keys.pl2 -stashed
-label secret.key —target ~/db2/mykey.pl2 -target_ type pkcsl2
-target_pw StrOngPasswOrd

52 © 2015 IBM Corporation

There are situations where you may want to export the master key label to another system. For instance, the
backups that are generated for an encrypted database are (generally speaking) encrypted as well. If you want
to restore this database on a different server, then that server will need access to the master key label.

There are two methods available to move a master key. One method is to use the —extract command which
takes the contents of the current encryption key and places it into a file. This file can then be moved to a
second system where you would use the —secretkey —add instructions to place it into the local keystore.

One of the drawbacks of using this approach is that the key file that is generated, is not encrypted. If this file
were intercepted at any point, you've got a serious security exposure.

The —export option is a more secure way of transporting a master key. The —export takes the master key that
you specify and places it into a file that is encrypted, using a password that you supply. This file can be moved
to the backup system and then added to the local keystore. In this case, if the file were to be lost during
"transit", the key is not exposed because it is encrypted with a password.

52

Importing a Master Key Label

» The import option on the cert command is used to import the master

key into an existing keystore (usually at a backup site)
— Note that the target file is the keystore on the backup system
gsk8capicmd 64 —cert -import -db -label -target -target pw

= Parameters
Keywords Use

-import Tells the command to import a master key into a file
-db Absolute location of the key that we want to import (not the current keystore)
-stashed Use the stashed password to access the keystore
-pw Password for the key that we exported from the original keystore
-label Name of the master key label that we want to import
-target Name of the local keystore file to place the contents of the master key into.
-target_pw Password for the keystore file, but you can use the stashed option
-target_type Type of file (pkes12)
= Example

gskB8capicmd 64 —cert —-import -db ~/db2/exportedkey.pl2 -stashed
-pw StrOngPasswOrd -label secret.key
-target ~/db2/db2keys.pl2 -target_type pkcsl2

53 © 2015 IBM Corporation

Once a master key label file has been moved to another system, you can use the —cert —import option to place
it into the local keystore. You must have the password that was used to encrypt the key in order for it to be
decrypted. The keystore that the key is being loaded in to will also require a password. In this case, you can
use the —stashed option so that the command takes the password from a stash file. If the stash file does not
exist then you will need to supply the password for the local keystore as well.

Note that the —db option refers to the master key label file that you generated on the primary system, and
-target refers to the local keystore.

53

Utilities, Diagnostics and
Special Considerations
Additional Slides

© 2015 IBM Corporation

This section discusses some of the miscellaneous items associated with encryption.

54

HADR Considerations

= Normally both primary and secondary databases are encrypted
= Possible to only have the primary or secondary encrypted
= On HADR startup, an admin warning message will be produced if one of the
databases is not encrypted
= A master key label must be defined when creating the database

= Secondary site will need to be set up as new a database
= Specify encryption options as part of the RESTORE command
= Keystore needs to be available locally

= Keystore management depends on instance setup
= |f secondary instance only supports encrypted databases from primary instance
then just copy the primary site keystore to the secondary site
= |f secondary instance has other encrypted databases then export the master
key from the primary and import into the secondary

gsk8capicmd -cert —export -db ~/db2/primary.pl2 -stashed
-label secret.key —-target secret.pl2
-target_type pkcsl2 -target pw StrOngPasswOrd

55 © 2015 IBM Corporation

HADR is supported with encryption. This slide illustrates the steps required in order to have encryption working
on both sites.

One of the interesting things about encryption and HADR is that one or both of the sites can be encrypted. You
can choose to have the secondary site encrypted and not the primary (or vice versa). This is fully supported,
but a warning message will be issued to remind you that they are out of sync.

The same master key must be available on both sites. The best way to do this is to have the same keystore on
both sites. If there is an existing keystore at the secondary site, then you should export the key from the
primary and import it into the secondary site.

Keystores on primary and secondary can be kept in sync automatically by using some file level synchronization
mechanism such as rsync or similar or by physically sharing the keystore. If doing the master key
synchronization manually, just add keys to both keystores but make sure it is done to the standby first.

55

HADR Key Rotation

= HADR supports key rotation but keystores must be synchronized
= Must ensure that no archived log with a new master key label is required on the
standby prior to the standby's key store having an entry for this new label

Automated keystore synchronization
= Both keystores are kept in sync using a shared file system or rsync command

Manual keystore synchronization
= Master key is generated on secondary and exported back to the primary before
key rotation is done

Key Rotation process
1. Add a new master label in the standby's key store (Y)
2. If keystores are not synchronized
« Export the master key label to a file and move to the primary site
* Import the master key (Y) into the primary keystore
3. Connect to the primary database

4. lssue the key rotation command
CALL SYSPROC.ROTATE_MASTER KEY ('<Y>')

56 © 2015 IBM Corporation

The same master key must be available on both sites. The best way to do this is to have the same keystore on
both sites. If there is an existing keystore at the secondary site, then you should export the key from the
primary and import it into the secondary site.

HADR also supports key rotation but you must supply a master key label for the key rotation command. Best
practice is to:

STANDBY:

*Add new master key label <Y> to the key store on the standby database. Extract the master key and move it
to the primary site.

PRIMARY:
«Import the master key (same one as used on secondary) into the keystore
*CALL SYSPROC.ROTATE_MASTER_KEY('<Y>");

Keystores on primary and secondary can be kept in sync automatically by using some file level synchronization
mechanism such as rsync or similar or by physically sharing the keystore. If doing the master key
synchronization manually, just add keys to both keystores but make sure it is done to the standby first.

56

HADR Key Rotation Diagnostics

» Key Rotation on Standby happens asynchronously, but driven by key
rotation on primary system

= If the key rotation on standby has failed, an ADM message is logged

2015-01-12-15.55.23.398487 Instance:geoffrey Node:000
PID:17361(db2Zhadrs.0.0 (HADRDB)) TID:1065347392 Appid:none
High Availability Disaster Recovery hdrEdu::hdrEduS Probe:21719 Database:HADRDB

ADM12517E A master key rotation to label

"DB2_SYSGEN_geoffrey HADRDB 2015-01-12-15.54.26" failed on the HADR standby
with zre "-2141452053". The standby system disconnects to retry key rotation.

= Most common error is master key label not present in the
standby keystore

57 © 2015 IBM Corporation

HADR key rotation is logged in the db2diag file, along with any errors that are caused during rotation. View
these messages to see cause of key rotation failure. Most common is master key label not present in standby
keystore.

57

HADR Monitoring Flags

= Can check monitoring flags from either primary or standby systems
through the db2pd -hadr option:

HADR STATE = REMOTE CATCHUP PENDING
HADR FLAGS = STANDBY RECV_BLOCKED STANDBY KEY ROTATION ERROR

STANDBY_KEY_ROTATION_ERROR flag
indicates that there has been an key rotation error on the standby system and
receiving of new HADR messages has been blocked.
If problem is resolved within timeout period (30 mins), the systems will re-
connect and HADR continues
If the problem is not resolved then HADR will shut down and users have to
restart HADR after the issue is fixed

Most problems are related to master keys not being synchronized
between the systems

58 © 2015 IBM Corporation

Most problems are related to master key issues. The following scenarios illustrate the potential problems that
can occur.

Customer creates primary DB using automatically generated master key label.
« Determine label using the built-in table function

« Extract master key from primary system's keystore
* Import master key into standby system's keystore
+ Use this label when restoring backup to create standby database

Customer creates standby DB using automatically generated master key label
The standby will immediately drive key rotation as it detects primary is using a different label.

This will fail as the label does not exist on the standby site (hadr will retry several times but after bring
down the system).

Add label and restart.

58

Examples

© 2015 IBM Corporation

This section discusses some of the miscellaneous items associated with encryption.

59

Backup/Restore Encrypted Database Examples

CREATE DATABASE SECRET ENCRYPT
BACKUP DATABASE SECRET ON /db2
RESTORE DATABASE SECRET FROM /db2

RESTORE DATABASE SECRET FROM /db2 ENCRYPT

RESTORE DATABASE SECRET FROM /db2 ENCRYPT CIPHER AES KEY LENGTH 192

RESTORE DATABASE SECRET FROM /db2 NO ENCRYPT

RESTORE DATABASE SECRET FROM /db2 ENCRYPT
ENCRLIB 'libdbZencr.so' ENCROPTS 'show master key details'

UPDATE DATABASE CONFIG USING ENCROPTS NULL IMMEDIATE
BACKUP DATABASE SECRET ON /db2 ENCROPTS 'Ciper=AES:Key Length=128"

UPDATE DATABASE CONFIG USING ENCRLIB NULL ENCROPTS NULL IMMEDIATE
BACKUP DATABASE SECRET ON /db2

@
=3

© 2015 IBM Corporation

This slide shows some examples of using the backup and restore commands with encrypted databases.

60

Backup/Restore Regular Database Examples

CREATE DATABASE NOSECRET
BACKUP DATABASE NOSECRET TC /db2
RESTORE DATABASE NOSECRET FROM /db2

RESTORE DATABASE NOSECRET FROM /db2 ENCRYPT

RESTORE DATABASE NOSECRET FROM /db2 ENCRYPT CIPHER AES KEY LENGTH 192

BACKUP DATABASE NOSECRET TO /db2 ENCRYPT
ENCRLIB 'libdbZencr.sc"
ENCROPTS 'Cipher=AES:Key length=128:Master Key Label=secret.key'

RESTORE DATABASE NOSECRET FROM /db2

UPDATE DATABASE CONFIG USING

ENCRLIB '/home/db2instl/sgllib/1ib/libdb2encr.so’

ENCROPTS 'Cipher=AES:Key length=128:Master Key Label=secret.key'
BACKUP DATABASE NOSECRET TO /db2

@

© 2015 IBM Corporation

This slide shows some examples of using the backup and restore commands with normal databases.

61

HADR Setup Example

gskBcapicmd -keydb -create -db ~/db2/dbZkeys.pl2 -type pkcsl2 -pw StrOngPasswOrd - strong -stash
head -¢ 32 /dev/random > ~/db2/secretkey.pl2
gskBecapicm -secretkey -add -db ~/db2/db2keys.pl2 -stashed -label secret.key —file ~/db2/secretkey.pl2

UPDATE DBM CONFIG USING KEYSTORE_NAME /home/db2instl/db2/db2keys.pl2 KEYSTORE TYPE FKCS1Z
CREATE DATABASE SECRET ENCRYPT CIPHER BES KEY LENGTH 256 MASTER KEY LABEL secret.key
BRCKUP DATABARSE SECRET TO ..

gsk8capicm -cert —export -db ~/db2/db2keys.plZ -stashed -label secret.key
-target ~/db2/export.pl2 -target pw "StrOngPasswlrd"™ -target type pkcslz2
scp ~/db2/export.pl? dbZinstl@secondary:/home/db2instl/db2

gskBcapicmd -keydb —create —db ~/db2/db2keys.pl2 -type pkcsl2 -pw StrOngPasswOrd — strong —stash
gskBcapicmd -cert -import -db ~/db2/export.pl2 -label secret.key -pw "StrOngPasswOrd”

—target ~/db2/dbZkeys.pl2 -target type pkcsl2 -stashed
UPDATE DBEM CONFIG USING KEYSTCRE_MAME /home/db2instl/db2/dbZkeys.pl2 KEYSTORE_TYPE PKCS12

RESTORE DATABASE SECRET FROM /db2 ENCRYPT CIPHER .. MASTER KEY LABEL secret.key

@
=

© 2015 IBM Corporation

HADR is supported with encryption. This slide illustrates the steps required in order to have encryption working
on both sites.

One of the interesting things about encryption and HADR is that one or both of the sites can be encrypted. You
can choose to have the secondary site encrypted and not the primary (or vice versa). This is fully supported,
but a warning message will be issued to remind you that they are out of sync.

The same master key must be available on both sites. The best way to do this is to have the same keystore on
both sites. If there is an existing keystore at the secondary site, then you should export the key from the
primary and import it into the secondary site.

HADR also supports key rotation but you must supply a master key label for the key rotation command. Best
practice is to:

STANDBY:

*Add new master key label <Y> to the key store on the standby database. Extract the master key and move it
to the primary site.

PRIMARY:
«Import the master key (same one as used on secondary) into the keystore
*CALL SYSPROC.ROTATE_MASTER_KEY('<Y>");

Keystores on primary and secondary can be kept in sync automatically by using some file level synchronization
mechanism such as rsync or similar or by physically sharing the keystore. If doing the master key
synchronization manually, just add keys to both keystores but make sure it is done to the standby first.

62

HADR Key Rotation Example

head -c 32 /dev/random > ~/db2/newsecretkey.pl2
gskBcapicm -secretkey -add -db ~/db2/dblZkeys.pl2 -stashed -label newsecret.key -file ~/dbZ/newsecretkey.pl2

gsk8capicm -cert -export -db ~/db2/db2keys.pl2 -stashed -label newsecret.key
~target ~/db2/export.pl2 -target_pw "StrOngPassw0rd" -target_type pkesl2
scp ~/db2/export.pl2 db2instl@primary:/home/db2instl/db2

gskB8capicmd -cert -import -db ~/db2/export.pl2 -label newsecret.key -pw "StrOngPassw(rd"
-target ~/db2/dbZkeys.pl2 -target_type pkesl2 -stashed

CONNECT TO SECRET
CALL SY¥SPROC.ROTATE MASTER KEY ('newsecret.key')

63 © 2015 IBM Corporation

HADR also supports key rotation but you must supply a master key label for the key rotation command. Best
practice is to:

STANDBY:

*Add new master key label <Y> to the key store on the standby database. Extract the master key and move it
to the primary site.

PRIMARY:
«Import the master key (same one as used on secondary) into the keystore
*CALL SYSPROC.ROTATE_MASTER_KEY('<Y>");

Keystores on primary and secondary can be kept in sync automatically by using some file level synchronization
mechanism such as rsync or similar or by physically sharing the keystore. If doing the master key
synchronization manually, just add keys to both keystores but make sure it is done to the standby first.

63

